# ICSM ISO19115-1 Metadata Good Practice Guide



3 October 2019



## ICSM ISO19115-1 Metadata Good Practice Guide

This document was compiled by OpenWork Ltd (OWL) on behalf of and with guidance and contributions from the ICSM Metadata Working Group (MDWG). The purpose of this document is to capture the consensus good practice guidance for the use of recommended ISO 19115-1 metadata elements for organisataion in the Australia / New Zealand region. Further this guidance will aid the migration from the retired ANZLIC Metadata Profile of ISO 19115:2003 to the currently endorsed ISO 191125-1:2014 (including Amd.1:2018).















## Acknowledgements

## **ICSM Metadata Working Group**

- Chair: Irina Bastrokova irina.bastrakova@ga.gov.au
- Secretariat: Andrew Whiting andrew.whiting@ga.gov.au
- Secretariat: Graham Logan graham.logan@ga.gov.au
- ANZLIC: Brian Sloan Brian.Sloan@ga.gov.au
- ANZLIC: Ann Beaumaris Ann.Beaumaris@industry.gov.au
- ICSM: Executive Officer Lesley Waterhouse lesley.waterhouse@ga.gov.au

#### **Contributors**

- Lead Author: Byron Cochrane OpenWorks Ltd byron@openwork.nz
- Irina Bastrakova Geoscience Australia irina.bastrakova@ga.gov.au
- Shanti Rowlison Australia Government Dept of Defense shanti.rowlison@defence.gov.au
- Jenny Mahuika Terrestrial Ecosystem Research Network (TERN) j.mahuika@uq.edu.au
- Evert Bleys ABARES ejbleys@gmail.com
- Melanie Barlow Australian Research Data Commons (ADRC)- melanie.barlow@ardc.edu.au
- Aaron Sedgmen Geoscience Australia Aaron.Sedgmen@ga.gov.au
- Martin Capobianco Geoscience Australia Martin.Capobianco@ga.gov.au
- Dave Connell Australia Antarctic Division, Dept of the Environment and Energy -Dave.Connell@aad.gov.au

#### >> Introduction

#### Introduction

This guide is intended to provide a resource for those wishing to implement the AS/NZS ISO 19115.1:2015 metadata standard (including the 2018 Amendment No.1) in the Australia and New Zealand region. While this has been the officially endorsed metadata standard for Australia and New Zealand since 2015, consistency of implementation and the slow development of tools to support this standard have been problems. The development of this document has been undertaken to alleviate these issues and to provide a basis for further work.

This guide is meant to be a living document. At times it does not always provide strong guidance on the use of an element as MDWG discussion about the element usage has need



to continue and mature. This document is meant to evolve as use and understanding of the standard matures. It is meant to be an online active resource that can be referenced and grow as needed.

As we are human, absolute agreement about the use of the metadata and elements is not achievable. But we can narrow the difference in understanding through the use of definitions and guidance.

## **Background**

On the 13th June 2018, the Australian and New Zealand, Location Information Metadata Working Group (ANZ MDWG) was re-established by request of the ANZLIC – the Spatial Information Council (ANZLIC) and the Intergovernmental Committee on Surveying and Mapping (ICSM).

The working group will support a wider understanding and consistent application of location information metadata, based on agreed standards.

Terms of Reference - Actively monitor and assess the impact of future changes to metadata standards, in order to advise ANZLIC on policy impacts and stakeholders on the scale and impact of technical changes, through the managed knowledge of current national capabilities in metadata. - Create and maintain a roadmap documenting what the MDWG is going to undertake and when. - Develop, and manage a series of best practice resources (profiles, applications, websites (ANZLIC and ICSM), FAQs, models) to assist both general and technical audiences in understanding, implementing and managing the latest versions of metadata standards. - Engage with interested industry organisations (SIBA, ESRI, etc.) to communicate working group developments and directions. - Provide advice to spatial communities on the value, implementation and management of metadata and associated systems. - Provide a forum for metadata custodians to share and exchange knowledge related to implementing, maintaining and updating metadata frameworks. - Provide a forum for inward and outward communication between international (ISO and OGC peak bodies), other interest groups (Australian Government Linked Data Working Group, GeoNetwork community of practice etc.) to inform and seek feedback from core foundation spatial data custodians. - Govern associated metadata tools, models, vocabularies, and resources, which are published on by ICSM and or ANZLIC. - Report to ICSM and ANZLIC on key activities, and metadata developments.

## >> Table of Contents



## **ICSM Metadata Good Practice - Table of Contents**

#### Guidance

- Introduction
- Pattern guide
- Template

#### Metadata for Metadata

- Class MD\_Metadata
- Metadata Identifier
- Metadata Linkage
- Metadata Date
- Metadata Responsible Party
- · Metadata Default Locale
- Resource Scope
- Metadata Legal Constraints Includes:
- Legal constraints
- Reference for legal
- Metadata Security Constraints Includes:
- Security constraints
- · Reference for security
- Parent Metadata

## Metadata for Data Resources

- Package Identification Information
- Resource Default locale
- Abstract
- Purpose
- Status
- Topic Category
- Spatial Resolution
- Resource Point of Contact
- Additional docs
- Spatial Representation Type



- AssociatedResource
- Format
- Browse Graphic
- Package Resource Citation
  - Resource Title
  - Resource Identifier
  - Resource Date
  - Resource Edition
  - Series
  - Resource Cited Responsible Party
- Package Keywords Including:
  - ABS Field of Research
  - ABARES Keyword
  - AGIFT Keyword
  - Other keywords
- · Package Maintenance Includes:
  - Frequency of Updates
  - Scope for Maintenance
- Package Resource Constraint Information
  - Resource Constraints Includes:
  - UseLimitations
  - Releasibility
  - OtherConstraints
  - Resource Legal Constraints Includes
  - Legal constraints
  - Reference for legal
  - Resource Security Constraints Includes
  - Security constraints
  - Reference for security
- Package Extent
  - GeoExtent
  - Extent Geographic Description
  - Extent Bounding Box
  - Extent Vertical



- Extent Temporal
- · Package Lineage
- Resource Lineage Includes:
  - Statement
  - Source
- Package ReferenceSystemInfo
- Spatial Reference System
- Package Distribution Information
- DistributionInfo Includes
  - Format
  - Distributor
  - Online Resource
  - Offline Resource

#### **Classes**

- CI\_Citation
- CI\_Date
- CI\_OnlineResource
- CI\_Responsibility
- MD\_BrowseGraphic
- MD\_Constraints
- MD\_DataIdentification
- MD\_Metadata
- MD\_Identification
- MD\_Identifier
- MD\_LegalConstraints
- MD\_Scope
- MD\_SecurityConstraints
- PT\_Locale

## >> Patterns Explained



#### Pattern Guide

## **Approach**

Building on previous work by the Metadata Working Group of the ICSM (MDWG), elements previously identified as important are detailed separately but within the context of metadata records for spatial data resources. This was done using a Pattern Language approach as developed by Christopher Alexander, et al in the late 1970s for architecture in the book "A Pattern Language" and later applied to the digital domain most famously in "Design Patterns: Elements of Reusable Object-Oriented Software" (1994) by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides which became the bible for Object Orient Programming. It is a format common in various W3C notes including "Data on the Web Best Practices" and "Spatial Data on the Web Best Practices".

#### **Elements as Patterns**

A design pattern is a general, reusable solution to a commonly occurring problem within a given context. In our case, these are the elements of ISO19115-1 metadata records.

**Meaningful Name** An entry starts with a meaningful name that provides an anchor to which we can refer. These are associated in our case with the individual element, class or package in the standard. A star rating (1 to 5 stars) indicates the importance or priority of the element in the general ICSM context. In some domains and agencies, these rating will differ. This is followed by a short statement that provides context for the element and why it is useful.

A small table follows that summarises details about the element. These include: - Path - Which provides clear identification about where the element sits in the structure of a metadata record. - Governance - Details what body is most likely to make decisions about how the element is used and populated. Common values are ISO, Common ICSM, Domain, Agency. Sometimes these decisions are made at more than one level. - Purpose - Provides the high-level purpose of the element - for what is it most useful? Common values include: Discovery, Evaluation, Use, Management - Audience - describes with a 1 to 5 star rating how important the element is to the select personas. These personas include: - machine resource - for purely digital interactions - general - a novice audience - resource manager - parties responsible for the management of the data - specialist - subject matter specialist who know a great deal about the domain. - Metadata type - Which of the three



general metadata types does the element belong, *descriptive*, *structural*, or *administrative* - *ICSM Level of Agreement* - A 5 star rating as to how close to consensus the MDWG is on the description of this item. A low number of stars usually indicates lack of process progress rather than disagreement.

**Definition** The next section holds a brief in context definition of the element. This is followed by the ISO19115-1 standard rules of cardinality and obligation for the element and the class used to structure the captured information. A brief statement of ICSM Good Practice summarises some further guidance as developed by the MDWG. This includes guidance on the use of the class and its sub-element or at times, siblings.

**Discussion** This section captures the thinking of the MDWG behind the use of this element. The following aspects in this order are considered: - Why this element is important? - What we need it for? - Who should capture this information? - Whom is it useful to? - When should the information be captured? Where is it important, with what resource?

Outstanding issues are also captured in this section. This is a living document and we only get to the level of agreement that we can. Capturing these outstanding differences and lack of understanding, allows us to know where to start on the next bit of work.

**Recommendations** Finally, we come to the recommendations. These are statements capture the what, why, who, when and how MDWG recommend this element be used. They provide an in-context summary of the MDWG guidance and the reasoning behind it.

**Crosswalks** Included in the Recommendation section are crosswalk concerns when translating metadata between four different standards: ISO19139, Dublin core/CKAN/data.gov.au, DCAT, and RIF-CS.

ISO19139 is the previous standard that ISO19115-3 replaced. It is also the parent to widely used metadata profiles such as ANZLIC and MCP. Many geospatial practitioners currently have metadata in this standard and need to know how to migrate.

Dublin core/CKAN/data.gov.au represents the way that top-level catalogues such as data.gov.au hold their metadata. These are more abbreviated formats focused on data discovery. Knowing how to share metadata with these platforms while not losing the important additional information held in ISO19115-1 is of high importance.

DCAT is a newer metadata standard developed by the W3C and based on linked data principles like RDF and formal ontologies. It can be thought of as a wrapper around other



standards that make the sharing of metadata between standards easier through the use of well understood tags. The use of this standard continues to grow and is important for metadata exchange.

RIF-CS stands for Registry Interchange Format - Collections and Services. It is an XML vocabulary for representing metadata about data collections and related entities based on ISO 2146. Similar to how MARC standards are used by library systems to describe books, RIF-CS is used to describe data collections. For example, a RIF-CS record can describe a spreadsheet containing experimental results: it might contain the title, description, creator, keywords, date the experiment was conducted and a URL to obtain the actual spreadsheet. RIF-CS is the format required by Research Data Australia.

**Related Links** Related links are captured in a section titled "Also Consider". This section contains references to additional useful information. Usually, these are other elements, packages and classes in this good practice document. But these may also be links to other external related resources.

**Examples** Each entry closes with an example section. It is hoped that contents here grow over time as more exemplars are contributed. When available, contributing organisations are cited and the example is given. Almost all entries include a reference example in XML. This section and the document closes with a UML diagram captured from the official ISO TC211 conceptual model repository at https://www.isotc211.org/hmmg/HTML/ConceptualModels/.

#### How To Use This Document

An example of how this document might be used to provide guidance by an organisation on the use of ISO19115-1 is given below. This example is of how we might use this to provide a user support for capturing discovery level metadata as guided by the document "AS/NZS ISO 19115.1:2015 Amendment No. 1 appended". The following was extracted from "Annex F Table F.1 — Metadata for the discovery of geographic datasets and series."

## Metadata for discovery of geographic datasets - guidance

| Metadata element                | Guidance Link       |
|---------------------------------|---------------------|
| Metadata reference information: | Metadata Identifier |
| Resource title:                 | Resource Title      |



| Metadata element                        | Guidance Link              |
|-----------------------------------------|----------------------------|
| Resource reference date:                | Resource Date              |
| Resource identifier:                    | Resource Identifier        |
| Resource point of contact:              | Resource Point of Contact  |
| Geographic location:                    | Extent Bounding Box        |
| Resource language:                      | Resource Default locale    |
| Resource topic category:                | Topic Category             |
| Spatial resolution:                     | Spatial Resolution         |
| Resource type:                          | Resource Scope             |
| Resource abstract:                      | Abstract                   |
| Resource lineage:                       | Resource Lineage           |
| Keywords:                               | Keywords                   |
| Constraints on resource access and use: | Resource Constraints       |
| Metadata date stamp:                    | Metadata Date              |
| Metadata point of contact:              | Metadata Responsible Party |

# >> Patterns Template



# {Element or Package Title}

{stars indicate level of ICSM importance / priority}

{A brief description about the problem this element addresses - why we need it. Where it sits in the metadata hierarchy.}

- **Path** {*XML* path to the element}
- **Governance** {who makes decisions about how this element is populated. Possible values: ISO, Common ICSM, Domain, Agency}
- **Purpose** {The type of use the element is intended to aid. Values: Discovery, Evaluation, Use, Management)
- Audience {How important is this to these classes of users}
- machine resource 🛛 🗎 🗎
- general 💵
- resource manager 🛛 🗎 🗎
- specialist □□
- **Metadata type -** {descriptive, sturctural, or administrative}
- *ICSM Level of Agreement*  $\Box\Box\Box$  {5 star max. How close to consensus the MDWG is on the description of this item. Low number of stars usually indicates lack of process progress rather than disagreement.}

#### **Definition**

## {In context definition}

#### **ISO** Requirements

{Verbal description with links of the cardinality (e.g. [1-\*]) and obligation of the element and its class}

#### **ICSM Good Practice**

{A brief statement of MDWG guidance on use of this element}

**Recommended Sub-Elements** {MDWG recommended sub-elements and how to populate them. May be nested.} - {sub-elementName} - (type - {name of type}) [{cardinality}] -



{brief guidance statement} - {sub-elementName} - (codelist - {name of codelist}) [{cardinality}] - {brief guidance statement} - {sub-elementName} - (class - {name of class}) [{cardinality}] - {brief guidance statement} - - {sub-elementName for above class} - (type - {name of type}) [{cardinality}] - {brief guidance statement} - {sub-elementName for above class} - (codelist - {name of codelist}) [{cardinality}] - {brief guidance statement} - {sub-elementName for above class} - (class - {name of class}) [{cardinality}] - {brief guidance statement}}

#### Discussion

{This section captures the thinking behind the use of this element. The following aspects in this order are considered: - Why this element is import? - What we need it for? - Who should capture this information? - Whom is it useful to? - When should the information be captured? - Where is it important, with what resource?}

## **Outstanding Issues**

{Unresolved issues of discussion are captured here in Markdown Notes format}

#### **CORE ISSUE:**

{If there is any major issue of concern, Name it and discuss here}

**{Issue Name}** {Issue discussion points and items which need resolution}

**Other discussion** {from other sources of note - other standards and implementations. In Markdown Notes format. Such as:} > {**DCAT Notes**} - {Discussion of issue} > {**From data.govt.au**} - {Discussion of issue}

#### Recommendations

{Therefore - Statement about what, why, who, when and how MDWG recommend this element be used}

#### Crosswalk considerations

**ISO19139** {Discussion of issues, if any, to guide migration from ISO19139}



**Dublin core / CKAN / data.gov.au {if any}** {mapping to DC element and discussion}

**DCAT** {mapping to DCAT element and discussion, if any}

**RIF-CS** {mapping to RIF-CS element and discussion, if any}

#### Also Consider

{Links to additional useful information. Usually other elements, packages and classes in this good pratice document. May also link to other external resources.} **{element name}** - {description of importance and utility with any links} **{element name}** - {description of importance and utility with any links} **{class name}** - {description of importance and utility with any links}

## **Examples**

#### GA

{example - if any useful}

#### **ABARES**

{example - if any useful}

#### Others

{### who - example - if any useful}}

#### XML -

```
<mdb:MD_Metadata>
....
{<in context xml/>}
....
</mdb:MD_Metadata>
```



{Name}

# **UML** diagrams

{Captured from official ISO documentation at https://www.isotc211.org/hmmg/HTML/ConceptualModels/Recommended elements highlighted in Yellow

OpenWork Byron Cochrane 15



## class - MD\_Metadata

In order to create consistent structured metadata, we need a schema to provide a structure and a class to hold it. MD\_Metadata provides this for ISO19115-1.

- Governance ISO
- Metadata Type structural
- ICSM Level of Agreement □□

#### **Definition**

## Root entity which defines metadata about a resource or resources

#### Child packages

#### **ICSM** recommended

- resourceLineage (class Li\_Lineage) [0..\*]
- referenceSystemInfo (class MD\_ReferenceSystem)
- metadataConstraints ( abstract class MD\_Constraints) [0..\*] see
- Metadata Security Constraints
- Metadata Legal Constraints
- **indentificationInfo** (abstract class MD\_Identification) [1..\*] see:
- Data Identification (class MD\_DataIdentification) > ?create Entry?
- **Service Identification** (class SV\_ServiceIdentification) > To Be Completed
- distributionInfo (class MD\_Distribution) [0..\*]

#### Other packages - not yet addressed by MDWG

- metadataMaintenance (class MD\_MaintenanceInformation) [0..1]
- spatialRepresentationInfo (abstract class MD\_SpatialRepresentation) [0..\*]
- metadataExtensionInfo (class MD\_MetadataExtensionInformation) [0..\*]
- applicationSchemaInfo (class MD\_ApplicationSchemaInformation) [0..\*]
- portrayalCatalogInfo (class MD\_ProtrayalCatalogueReference) [0..\*]
- contentinfo (abstract class MD\_Contentinformation) [0..\*]
- dataQualityInfo (class DQ\_DataQuality (from ISO19157)) [0..\*]



#### **Atributes**

#### MDWG Recomended Attributes -

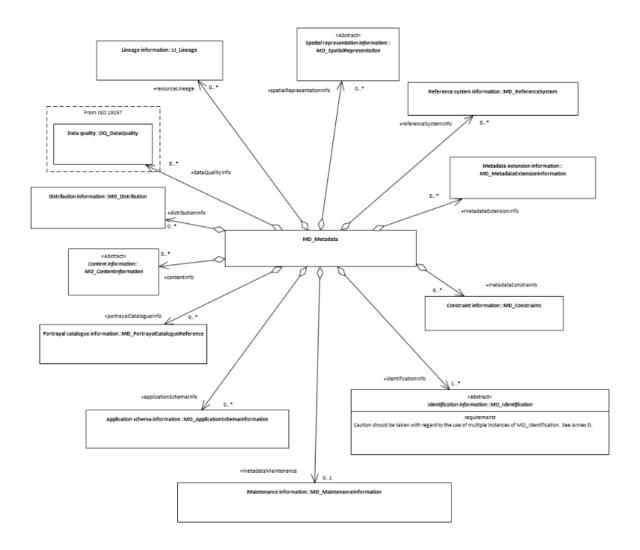
- metadataldentifier (class MD\_Identifier) [0..1]
- dateInfo (class Cl\_Date) [1..\*]
- contact (class Cl\_Responsibility) [0..1]
- defaultLocale (class PT\_Locale)[0..1]
- metadataLinkage (class Cl\_OnlineResource)[0..\*]
- parentMetadata (class Cl\_Citation [0..1]
- metadataScope (class MD\_MetadataScope)[0..\*]
- metadataStandard (class Cl\_Citation) [0..\*] AS/NZS ISO 19115-3 > recommnded but not yet detailed by MDWG
- metadataProfile (class Cl\_Citation) [0..\*] > recommnded but not yet detailed by MDWG

## Other attributes - not yet addressed by MDWG

- otherLocale (class PT\_Locale)[0..\*]
- alternativeMetadataReference (class Cl Citation [0..\*]

#### Discussion

The MD\_Metadata package defines the schema for describing the complete metadata about a resource and metadata about the metadata itself. It is composed through an aggregate of 12 additional metadata classes as shown above. The MD\_Metadata class also contains attributes providing information about the metadata record itself. Those recommnded attributes are covered in other sections as cited above


#### Recommendations

Therefore - It is recommended that all spatial metadata utilise the structure provided by the ISO19115-1 MD\_Metadata class and follow the guidance provided.

## **UML** diagrams

Recommended elements highlighted in Yellow





**Figure 1:** image-20190711170142639



## Metadata Identifier

In order for machines and people to distinguish a metadata record from all others a Metadata record MD\_Metadata needs a unique identifier.

- Path MD\_Metadata.metadataldentifier>MD\_Identifier
- Governance Common ICSM
- Purpose linkage, identification
- · Audience -
- machine resource DDDD
- general 🛘
- data manager 🗆 🗆 🗆
- specialist □□
- Metadata type administrative
- ICSM Level of Agreement □□□□

#### **Definition**

The persistent unique alphanumeric identifier for the metadata record that describes a resource.

## **ISO** Obligation

• There should be zero or one [0..1] metadataldentifier for the cited resource in the *MD\_Metadata* package of class *MD\_Identifier*.

#### **ICSM Good Practice**

• This element should be populated in all metadata records

**Recommended Sub-Elements** From class *MD\_Identifier* - **code** - (*type* - *charStr*) [1..1] a UUID, mandatory when identifier is provided - **codespace** - (*type* - *charStr*) [0..1] ideally a URL path by which, when combined with the uuid, the full metadata can be retrieved. - **authority** - (*class* - *Cl\_Citation*) [0..1] optional, the provider of the UUID



#### Discussion

Every metadata record needs a unique identifier so as to provide certainty as to the identity of the record and to provide a primary key for linkages. This element should hold UUID, preferably in the form of a resolvable URI (either stanalone or in combinationwith anther element e.g. <mcc:codespace>). This provides the machine readable (and human) ability to determine if this is the same or different to other metadata records. It is useful in machine to machine activities such as metadata harvesting. It is also at times useful to data managers and others to determine if a record is the same as another.

This identifier must never change, irrespective of where that metadata record is stored. This allows linkages to a metadata record to persist.

Equivalent of this field was recommended as mandatory in the previous ANZLIC Standard. Common practice is to record a UUID in this field.

#### **Outstanding Issues**

**CORE ISSUE:** In ISO the identifier for the Metadata can differ from that of the data. This is not necessarily the case in other metadata standards such as Dublin Core or DCAT.

Resolvable URIs Of note - the ISO conceptual reference model for ISO 19115-1 available at https://www.isotc211.org/hmmg/HTML/ConceptualModels/EARoot/EA1/EA12/EA2/EA4095.htm This includes a description that differs slightly from previous description - "Unique Identifier and onlineResource for this metadata record" In many ways it would be preferable if this field were populated with a URI that ultimately resolved to a point of truth for the metadata record. Some issues remain in software that incorrectly prohibit characters needed by URIs. The nested tag that actually holds the UUID character string is mcc:code. This is noted in the UML for this element: "NOTE: avoid characters that are not legal in URLs". This would suggest that URIs of type URL are to be allowed. While I would not currently recommend URIs in this field, due to software limitations, it is a practice that would likely be encouraged in the future when linked data is more prevalent. A recommended solution is to populate codespace with the path by which, when combined with the uuid, the metadata can be retrieved. In practice metadataLinkage (Link) often contains the online linkage (to the point of truth metadata record).



**Geonetwork usage** By default GeoNetwork calculates a unique value for the subelement *code* and populates the *codespace* element with "urn::uuid". These fields are not editable once generated.

#### Other discussion

**DCAT Notes** See long discussion at https://github.com/w3c/dxwg/issues/53 on how to represent the identifier scheme and authority; currently unresolved

**From data.gov.au** The fileIdentifier for a metadata record must never change, irrespective of where that metadata record is stored. Should be system generated. In CKANs case the UUID is common to dataset and metadata record, and takes the UUID with it across new systems. Automatically generated unique ID. Decided against DOI as unique ID already generated in CKAN. DOI records created in ANDS can be leveraged for those who want them given data.gov.au metadata to be harvested by ANDS.

#### Recommendations

Therefore - It is Highly Recommended that every metadata record should have one and only one metadata identifier (MD\_Metadata > mdb:metadataldentifier > MD\_Identifier). The child element <mcc:code> should contain the persistent uuid for the metadata record. While the child element <mcc:codespace> should contain the reference URL path by which, when combined with the uuid, this metadata record can be retrieved. It is beneficial to populate other sibling elements as needed such as <mcc:authority> to indicated the authority that minted the uuid.

#### Crosswalk considerations

**ISO19139** In iso19115-1 Data type CI\_ResponsibleParty (iso19115:2004) changed to type CI\_Responsibility Such as in MD\_Metadata.contact, MD\_DataIdentification.pointOfContact, Or CI\_Citation.citedResponsibleParty

Dublin core / CKAN / data.gov.au Maps to metadata URI

**DCAT** Maps to dct:identifier



#### RIF-CS Maps to Key Identifier

#### Also Consider

- **Resource Identifier** provides unique identifier to the resource. This may be the same as the metadata identifier when the metadata resource in a catalogue serves as the landing page for a resource.
- **Metadata Linkage** is most often used to provide a point of truth linkage (landing page) to the metadata record.
- **CI\_Citation (Authority)** Information authority responsible for minting the UUID, be it the software package or other mechanism, may be captured in the Authority subelement using the CI\_Citation package general guidance.
- **MD\_Identifier** General Guidance for the package used to hold the metadata identifier information. This package can be used to provide identity to a large number of other metadata elements.

## **Examples**

#### Other

data.govt.au http://data.gov.au/dataset/559708e5-480e-4f94-8429-c49571e82761

#### **XML**



## **UML** diagrams

Recommended elements highlighted in Yellow

```
#DataType

#D_Identifier

# authority: CI_Citation [0..1]

# code: CharacterString

# codeSpace: CharacterString [0..1]

# version: CharacterString [0..1]

# description: CharacterString [0..1]
```

Figure 2: MDIdentifier



# Metadata Linkage

Metadata records generally live in federated systems where metadata are harvested from catalogue to catalogue or collected from remote sources by other means. This can lead to confusion since through the harvesting and collection processes, different versions of the same metadata may co-exist. It is useful that a metadata record contains a link to the source metadata so that a point of truth version can be determined.

- **Path** MD\_Metadata.metadataLinkage>CI\_OnlineResource
- Governance Common ICSM
- **Purpose** *linkage*, *identification*
- · Audience -
- machine resource □□□
- general 💵
- data manager 🗆 🗆 🗅 🗅
- specialist 🗆 🗆 🗅
- Metadata type administrative
- ICSM Level of Agreement □□□□

#### Definition

Allows unambiguous specification of the online location where the metadata is available.

## **ISO** Obligation

• There should be zero to many [0..\*] *metadataLinkage* elements for the cited resource in the *MD\_Metadata* package of class *Cl\_OnlineResource* in a metadata record.

#### **ICSM Good Practice**

• If posible, one instance of this element must be populated in all metadata records with a link to the source "point of truth" metadata record.

**Recommended Sub-Elements** Follow the general guidance for class - Cl\_OnlineResource with the following additional guidance: - **description -** (*type - charStr*) [0..1] when



metadataLinkage is used as a "point of truth" location of the authoritative metadata, use this field to indicate this. - **function -** (codelist - CI\_OnlineFunctionCode) [0..1] This should be populated with the value "completeMetadata".

#### Discussion

The most common use of metadataLinkage is to record a "point of truth" location of the source authoritative metadata record. It is in the nature of metadata to be highly distrubuted. This is commonly done through federated systems that harvest (or otherwise collect) metadata from other sources. Sometimes this process gets out of sync. Sometimes the metadata is modified in the process. In order to retain an authoritative understanding of a metadata record it is useful to provide a linkage to the source as reference.

Alternatively, metadataLiunkage may be used to record the location of the metadata in its current catalogue. The Discription field should be used to indicate if this differs from other instances of the metadata record that may reside elsewhere. However, if alternate versions are not in ISO19115 format, such locations should be captured in alternativeMetadataReference.

The use of this field to hold the local of the metadata record in the local catalogue could be better accomplished through the options provided in metadataldentifier.

#### **Outstanding Issues**

**Point of Truth Issue:** The use of a standardised term for "point of truth" has been suggested. While this could be applied to the discription element it could be placed elsewhere such as an expanded *Cl\_OnlineFunctionCode* codelist

#### Recommendations

Therefore - There should be a "point of truth" url to a metadata record provided under metadataLinkage. Alternatively, this could be the full path to this metadata record. There may be multiple endpoints containing copies of this metadata record, one captured with the description of "Point of Truth URL for this metadata record" is recommended. All metadataLinkage elements should have a function code of "Complete Metadata".

As for multiple locations for the same metadata, it is useful to look at MD\_Metadata/alternativeMetadataR This allows pointers to metadata for the same resource that may be in multiple schemas. (ISO def - "reference to alternative metadata, e.g Dublin Core, FGDC, or metadata in a



non-ISO standard for the same resource") Of course, this does not suggest that it be used for different versions of the metadata in the same standard, but perhaps at least different profiles?

#### Crosswalk considerations

**ISO19139** As this is a new element to allow unambiguous specification of the online location where the metadata is available, there are no reliable elements to crosswalk.

**Dublin core / CKAN / data.gov.au** In Dublin core the identifier element is described as holding a reference to the resource (not the metadata). However in the case of metadata records harvested by s higher level CKAN like catalogue, we view the complete metadata record as the resource. It is also standard practice that the DC Identifier field be resolvable. For a Dublin core metadata harvested via CSW from a ISO 19115-1 record, it is important that that record links to something that can be derefewrenced. That something is held in the identifier field and should be the location URL/URI for the metadata. IF the ISO 19115-1 identifier element is only a unresolvable UUID, the metadataLinkage element may be a better choice to populate the DC Identifier field.

**DCAT** May map to dct:identifier if metadataIdentifier is unresolvable

RIF-CS May map to Key Identifier if metadataIdentifier is unresolvable

#### Also Consider

- **onlineResource** (MD\_Distribution.transferOptions>MD\_DigitalTransferOptions.online) is used to provide online linage to the resource.
- **MetadataIdentifier** is the preferred element to be used to provide linkage to the metadata record.
- alternativeMetadataReference (class Cl\_Citation)[0..\*] Page 37 ISO 19115.1:2015
   reference to alternative metadata, e.g Dublin Core, FGDC, or metadata in a non-ISO standard for the same resource
- class CI\_OnlineResource provides a standardised way of collecting links to online resources



## **Examples**

#### **XML**

```
<mdb:MD_Metadata>
 <mdb:metadataLinkage>
    <cit:CI_OnlineResource>
      <cit:linkage>
        <gco:CharacterString>
       http://geodata.nz/geonetwork/srv/eng/metadata/
        314eb989-3771-4c24-a399-d22631973279
        </gco:CharacterString>
      </cit:linkage>
      <cit:description>
        <gco:CharacterString>Point of truth URL of this metadata record
        </gco:CharacterString>
      </cit:description>
      <cit:function>
        <cit:CI_OnLineFunctionCode</pre>
        codeList="https://schemas.isotc211.org/19115/resources/Codelist/cat
        /codelists.xml#CI_OnLineFunctionCode" codeListValue="completeMetadata"/>
      </cit:function>
    </cit:CI_OnlineResource>
 </mdb:metadataLinkage>
</mdb:MD_Metadata>
```

#### **UML** diagrams

Recommended elements highlighted in Yellow



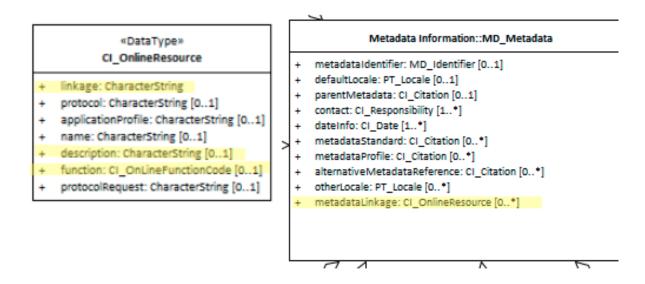



Figure 3: MDLinkage



## Metadata Date Info

In order to manage metadata and harvesting mechanism as giving updates to users it is usefull to include in our metadata temporal information relating to metadata creation, publication, revision, etc.

- Path MD\_Metadata.dataInfo
- Governance Common ICSM
- Purpose discovery, data management
- · Audience -
- machine resource  $\Box\Box\Box$
- general 🗆 🗆 🗅
- data manager 🗆 🗆 🗅 🗅
- specialist 🗆 🗆 🗅
- Metadata type descriptive
- ICSM Level of Agreement □□□

#### **Definition**

A named and dated event associated with the metadata record. (In ISO 8601 format).

## **ISO** Obligation

• There can be one to many [1..\*] *dateInfo* entries for the cited resource in the *MD\_Metadata* package of class *CI\_Date* in a metadata record. One of these must be of dateType *creation*.

#### **ICSM Good Practice**

• All updates to metadata should be include the date of last revision to the metadata. This can be an automated process.

**Recommended Sub-Elements** Follow the general guidance for class - CI\_Date with the following additional guidance: - **dateType -** One entry must be of this value *creation*.



#### Discussion

According to ISO guidance, there must be at least one instance of dateInfo in a metadata record (creation), but there may be multiple.

The CI\_DateType CodeList contains 16 values. Which values are of most import needs further discussion.

The ability to crosswalk easily with CKAN and DCAT are of high concern. These external catalogues commonly have a single date field. Which dateType we map to this field is of interest in discussions regarding the recommended dateTypes used.

Relation of Metadata dateInfo to Resource reference date needs to be discussed. The Resource reference date (MD\_Metadata.idenitificationInfo > MD\_DataIdentification.citation > CI\_Citation.date) is documented as the date that should be used for discovery of resources other than services. (For services MD\_Metadata.identificationInfo > SV\_ServiceIdentification.citation > CI\_Citation.date is used.)

When does the metadata dataInfo require updating? For instance, is it okay to not update the metadata dataInfo when the Resource reference date is updated if nothing else has changed? Our good practice guide should address this and related issues.

#### Other discussion

**Date and DateTime:** When is it okay to use Date as opposed to DateTime?

**DCAT:** encoded using the relevant ISO 8601 Date and Time compliant string [DATE-TIME] and typed using the appropriate XML Schema datatype [XMLSCHEMA11-2]

#### Recommendations

Therefore - In order to provide an idea of the age, validity and other time dependant properties of a metadata record, it is important to capture the important events that happened or will happen to a particular metadata record in the MD\_Metadata.dateInfo element. One of this important events must be of dateType "creation". This is often referred to as a "Metadata date stamp". It is recommended that 'dateInfo include - - date - (Mandatory) the reference DateTime for the metadata record. - dateType - (Mandatory for Creation) the event type to which the date refers. Populated from the CI\_DateTypeCode codelist. - dateType - (Mandatory for Revision when a revision is made) the event type to which the date refers. Populated from the CI\_DateTypeCode codelist.



This element should be updated in a consistent yet to be agreed upon manor. We recommend GeoNetwork's current approach. GeoNetwork updates the **revision date** for the metadata record automatically on every save. This supports systems such as notifications and harvesting regimes that rely on the capture of the date that a metadata record was last modified.

#### Crosswalk considerations

**ISO19139** The element dateStamp was replaced with dateInfo to allow other types of metadata date information to be recorded in addition to creation date. The type and cardinality of this element was changed in order to allow associating more than one type of date with a metadata record.

Dublin core / CKAN / data.gov.au Maps to publish and update date

**DCAT** Maps to dct:issued and dct:modified

RIF-CS Maps to @dateAccessioned

#### Also Consider

- Resource Date Dates associated with the resource
- CI\_Date the class by which dates are expressed

## **Examples**

#### XML -



```
<cit:dateType>
            <cit:CI_DateTypeCode
            codeList="https://schemas.isotc211.org/19115/resources/Codelist
            /cat/codelists.xml#CI_DateTypeCode"
            codeListValue="revision"/>
         </cit:dateType>
     </cit:CI_Date>
 </mdb:dateInfo>
   <mdb:dateInfo>
     <cit:CI_Date>
         <cit:date>
            <gco:DateTime>2005-03-31T19:13:30
        </cit:date>
        <cit:dateType>
            <cit:CI_DateTypeCode codeList="codeListLocation#CI_DateTypeCode"</pre>
            codeListValue="creation">creation</cit:CI_DateTypeCode>
         </cit:dateType>
     </cit:CI_Date>
 </mdb:dateInfo>
</mdb:MD_Metadata>
```

## **UML** diagrams

Recommended elements highlighted in Yellow



#### «CodeList» «DataType» CI\_Date CI\_DateTypeCode date: DateTime creation dateType: CI\_DateTypeCode publication revision expiry lastUpdate lastRevision Metadata Information::MD\_Metadata nextUpdate metadataIdentifier: MD\_Identifier [0..1] unavailable + defaultLocale: PT\_Locale [0..1] inForce + parentMetadata: CI\_Citation [0..1] adopted + contact: CI\_Responsibility [1..\*] deprecated + dateInfo: CI\_Date [1..\*] superseded + metadataStandard: CI\_Citation [0..\*] validityBegins + metadataProfile: CI\_Citation [0..\*] validityExpires + alternativeMetadataReference: CI\_Citation [0..\*] released + otherLocale: PT\_Locale [0..\*] distribution metadataLinkage: CI\_OnlineResource [0..\*]

Figure 4: dateInfo



# Metadata Responsible Party

A contact for the person responsible for a metadata record is useful to curent and future users and managers of the resource and catalogue.

- **Path** MD\_Metadata.contact
- Governance Common ICSM, Agency
- **Purpose** Discovery, Management, Communications
- · Audience -
- machine resource □□
- general 00000
- data manager 🗆 🗆 🗅 🗅
- specialist □□□
- Metadata type administrative
- ICSM Level of Agreement □□□□

#### **Definition**

Name and contact information about the organisation, role and individual who is responsible for the metadata record.

## **ISO** Obligation

• There must be one or more [1..\*] *contact* packages for the cited resource in the *MD\_Metadata* package provided in a metadata record for those responsible for the metadata itself. These will be of class *Cl\_Responsibility*.

#### **ICSM Good Practice recommendation**

• This element should be populated in all metadata records with a minimum of role, name (of organisation preferred), positionName and electronicMailAddress.

**Recommended Sub-Elements** Follow the general guidance for CI\_Responsibility. - One value of role should be "Point of Contact".



#### Discussion

This element refers to the party responsible for the metadata record itself and the maintenance of this metadata record. It does not refer to the party responsible for the resource the metadata describes.

This is a compound element of type CI\_ResponsibleParty. At least one must be present. Recommended role value - "PointOfContact" with attached email; other roles can be added as required

#### Recommendations

Therefore - In order to meet ICSM good practice, in all metadata records, at least one contact should be given for the party responsible for the metadata itself. One entry should be role code "Point of Contact". In addition, for minimal conformity, name (of organisation preferred), positionName and electrronicMailAddress should also be populated. The use of the new partyIdentifier element added in the 2018 ammendment to the standard is encouraged by all parties.

#### Crosswalk considerations

**ISO19139** See discussion at CI\_Responsibility

**Dublin core / CKAN / data.gov.au** Maps to contact

**DCAT** Maps to dcat:contactPoint

RIF-CS Maps to Related Party

#### Also Consider

- **Resource Point of Contact** Contact information for the recommended party to contact about the resource
- **Resource Cited Reponsible Party** contact information for the parties otherwise responsible for aspects of the the resource creation and maintenance.
- **DistributionInfo** Includes Distributor contact information.



## **Examples**

#### XML -

```
<mdb:MD_Metadata>
 <mdb:contact>
   <cit:CI_Responsibility>
      <cit:role>
       <cit:CI RoleCode
       codeList="https://schemas.isotc211.org/19115/resources/Codelist/cat
       /codelists.xml#CI_RoleCode"
       codeListValue="pointOfContact"/>
      </cit:role>
      <cit:party>
       <cit:CI_Organisation>
         <cit:name>
            <gco:CharacterString>OpenWork Ltd
          </cit:name>
          <cit:contactInfo>
           <cit:CI_Contact>
              <cit:address>
               <cit:CI Address>
                  <cit:electronicMailAddress>
                    <gco:CharacterString>name@email.org</gco:CharacterString>
                 </cit:electronicMailAddress>
               </cit:CI_Address>
              </cit:address>
           </cit:CI_Contact>
          </cit:contactInfo>
          <cit:individual>
            <cit:CI_Individual>
              <cit:name>
                <gco:CharacterString>Metadata Bob/gco:CharacterString>
              </cit:name>
              <cit:positionName gco:nilReason="missing">
                <gco:CharacterString/>
              </cit:positionName>
```



### **UML** diagrams

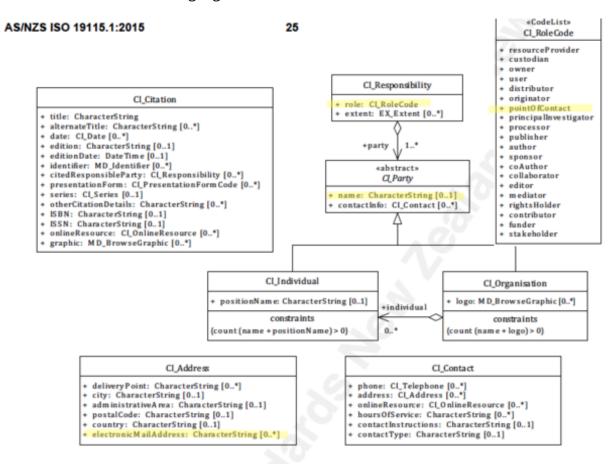



Figure 20 — Citation and responsible party information classes

Figure 5: Responsibility



### Metadata Default Locale

Metadata may be captured in different languages in different locations. For users it is important that the language of the metadata be known. MD\_Metadata.defaultLocale provide a way to record the primary language of the metadata.

- **Path** *MD\_Metadata.defaultLocale*
- Governance Common ICSM
- Purpose discovery, data management
- · Audience -
- machine resource □□□
- general 🗆 🗆 🗅
- data manager 🗆 🗆 🗅 🗅
- specialist 🗆 🗆 🗅
- Metadata type discovery
- ICSM Level of Agreement □□□

### Definition

Language and character set used for documenting metadata.

### **ISO** Obligation

• There can be one and only one [1..1] *defaultLocale* entries for the cited resource in the *MD\_Metadata* package in the metadata record of class *PT\_Locale*.

### **ICSM Good Practice**

• The default language in our region is English and it is recommended to be used as the language in metadata records using the 3 letter code "eng".

**Recommended Sub-Elements** Follow the general guidance for class - PT\_Locale

### **Recommended Sibling Elements -**

otherLocale - class - PT\_Locale [0..\*] when a metadata record has information in additional languages



There may be only one default locale identified in one metadata record. The element "otherLocale" can be use to provide information about alternatively used localised character strings

#### Recommendations

Therefore - In order to provide metadata in a consistant manner for the users in our region, it is recommended that English be chosen as the value for language using the ISO 639-2, 3-alphabetic digits code "eng".

#### Crosswalk considerations

**ISO19139** MD\_Metadata/language moved to MD\_Metadata/defaultLocale:PT\_Locale - Make use of the newly added Language and character set localization package for defining local language and character set.

**Dublin core / CKAN / data.gov.au** Maps to language CKAN has one field for language that maps to both Metadata and Resource language fields. ISO 19115 recommends 639-2 3 letter codes. Data.gov.au recommends IETF RFC4646 2 letter codes as primary. See https://www.loc.gov/standards/iso639-2/faq.html#6 for discussion of the differences

**DCAT** Maps to dct.language

**RIF-CS** No identified mapping

### **Also Consider**

- **MD\_Metadata.otherLocale** (codelist PT\_Locale) [0..\*] provides information about alternatively used localised character strings provides information about alternatively used localised character strings
- MD\_DataIdentification.defaultLocale (codelist PT\_Locale) [0..1] contains the language and character set used within the resource, such as map labels or other text.
- MD\_DataIdentification.otherLocale (codelist PT\_Locale) [0..\*] alternate localised language(s) and character set (s) used within the resource



# **Examples**

### XML -

```
<mdb:MD_Metadata>
   <mdb:defaultLocale>
      <lan:PT_Locale id="EN">
         <lan:language>
            <lan:LanguageCode</pre>
            codeList="http://www.loc.gov/standards/iso639-2/"
            codeListValue="eng"/>
         </lan:language>
         <lan:characterEncoding>
            <lan:MD_CharacterSetCode</pre>
            codeList="https://schemas.isotc211.org/19115/resources/Codelist/cat
            /codelists.xml#MD_CharacterSetCode" codeListValue="utf8"/>
         </lan:characterEncoding>
      </lan:PT_Locale>
   </mdb:defaultLocale>
</mdb:MD_Metadata>
```

# **UML** diagrams



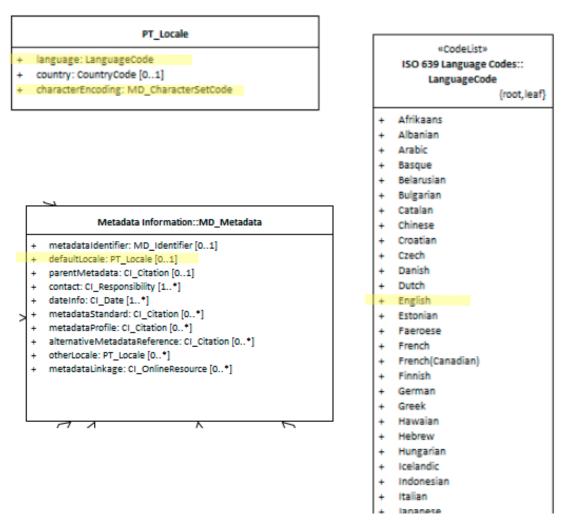



Figure 6: MDdefaultLocale



# Metadata Scope

In order to quickly find, catagorise and evaluate the fitness of a resource to our needs it is usefull to include in our metadata a high level description of the scope of the resource our metadata is describing.

- Path MD\_Metadata.metadataScope
- Governance Common ICSM
- Purpose discovery
- · Audience -
- machine resource □□□
- general 0000
- data manager 🗆 🗆 🗈
- specialist  $\square\square\square$
- Metadata type descriptiive
- ICSM Level of Agreement □□□

#### **Definition**

A resource code identifying the type of resource, e.g. service, a collection, an application which the metadata describes

## **ISO** Obligation

• There can be zero to many [0..\*] *metadataScope* entries for the cited resource in the *MD\_Metadata* package of class *MD\_MetadataScope* for the metadata record.

#### **ICSM Good Practice**

• At least one instance of this element should be populated in all metadata records.

## **Recommended Sub-Elements**

From class - *MD\_MetadataScope* - **resourceScope** - (codelist - *MD\_ScopeCode*) [1..1] Madatory when using MD\_MetadataScope. Default value "dataset". See MD\_Scope for more value options - **name** - (type - charStr) [0..1] description of the scope. Mandatory if resourceScope not equal "dataset"



MetadataScope contains information that describes the scope of the resource that this metadata record documents. The standard allows multiple scopes per metadata record, but we have no examples to date to illustrate this use. Current thought is that ICSM recommendation would be one and only one entry for metadataScope. MetadataScope replaces hierarchyLevel in the previous version of ISO19115. This was done to avoid ambiguity in cases where multiple scope codes and names are associated with a single record. The word hierarchy was dropped from the names because scopes can be used in non-hierarchical structures. This element, like a number of others, are essentially keywords, albeit of a special type, and are generally treated as such when records are harvested to other non ISO 19115 based catalogues.

### **Outstanding Issues**

**Metadata for resources other than datasets:** This element definition may warrant revision as we extend our work to cover metadata for services and other resources other than datasets.

**ISO Comment:** The values in the MD\_ScopeCode list are intentionally general and details of their application are left to the data provider. In order to foster interoperability, the usage of the scope codes should be carefully documented in any community of practice. Clause E.5 (ISO 19115.1-2014) outlines possible applications of codes from the MD\_ScopeCode codelist and related codes included in ISO/TS 19139 as part of the MX\_ScopeCode list. These examples are meant to provide reasonable starting points and are certainly not exhaustive.

**DCAT advice:** Typically, the subject will be represented using keywords, key phrases, or classification codes. Recommended best practice is to use a controlled vocabulary.

#### Recommendations

Therefore - In order to provide top level categorisation of entries in a catalogue, it is recommended that metadataScope be populated. The default value of MD\_MetadataScope.resourceScope should be dataset. When the value of resourceScope is other than dataset, MD\_MetadataScope.name must be populated.



#### **Crosswalk considerations**

ISO19139 MetadataScope replaces hierarchyLevel in the previous version of ISO19115. This was done to avoid ambiguity in cases where multiple scope codes and names are associated with a single record. The word hierarchy was dropped from the names because scopes can be used in non-hierarchical structures. Changed elements include - MD\_Metadata.hierarchyLevel changed to MD\_Metadata.metadataScope>MD\_MetadataScope.resourceScop - MD\_Metadata.hierarchyLevelName changed to MD\_Metadata.metadataScope>MD\_MetadataScope.name These two elements were moved to the new MD\_MetadataScope class to avoid ambiguity in cases where multiple scope codes and names are associated with a single record. The word hierarchy was dropped from the names because scopes can be used in non-hierarchical structures.

**Dublin core / CKAN / data.gov.au** In Dublin core the identifier element is described as holding a reference to the resource (not the metadata). However in the case of metadata records harvested by s higher level CKAN like catalogue, we view the complete metadata record as the resource. It is also standard practice that the DC Identifier field be resolvable. For a Dublin core metadata harvested via CSW from a ISO 19115-1 record, it is important that that record links to something that can be derefewrenced. That something is held in the identifier field and should be the location URL/URI for the metadata. IF the ISO 19115-1 identifier element is only a unresolvable UUID, the metadataLinkage element may be a better choice to populate the DC Identifier field.

**DCAT** May map to dct:identifier if metadataIdentifier is unresolvable

RIF-CS May map to Key Identifier if metadataIdentifier is unresolvable

### Also Consider

- keywords - Words or phrases describing the resource to be indexed and searched by web crawlers
- **Topic Category** is the preferred element to be used to provide linkage to the metadata record.



# **Examples**

### XML -

## **UML** diagrams



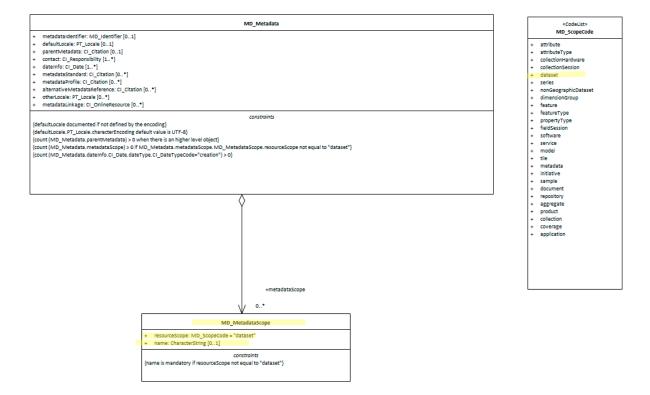



Figure 7: metadataScope



# Metadata Legal Constraints

The presence (or absence) of legal restrictions such as copyright, on a metadata record is important to document. Potential users need to be informed of rights, restrictions and responsibilities that apply to the use of such metadata.

- Path MD\_Metadata.metadataConstraints>MD\_LegalConstraints
- Governance Agency
- Purpose Resource use
- · Audience -
- machine resource -
- general 00000
- data manager 🗆 🗆 🗈 🗆
- specialist □□
- Metadata type adminsitrative
- ICSM Level of Agreement □□□

### **Definition**

Legal restrictions on the access and use of this metadata record e.g. copyright.

## **ISO** Obligation

• There may be zero to many [0..\*] *metadataConstraints* entries for the cited resource in the *MD\_Metadata* package of class *MD\_LegalConstraints* applied to a metadata record,

#### **ICSM Good Practice**

 The MDWG recommends populating this element metadataConstraints with legal constraint information to sufficient level to determine the legal rights, responsibilities and restrictions on a metadata record.

**Recommended Sub-Elements** Follow the general guidance for MD\_LegalConstraints.



Information about constraints on the access and use of a resource or its metadata is of high importance to document as this information strongly impacts on the usability of the resource to the user. Constraints may be security (MD\_SecurityConstraints), legal (MD\_LegalConstraints) or other (MD\_Constraints).

A restriction may be applicable to a particular aspect of the resource. In this case capture this scope in *constraintApplicationScope* using a value from *MD\_Scope* 

Almost all created resources (including metadata) carry some legal rights, restrictions and responsibility regarding their access and use. For instance, in most jurisdictions, copyright is automatically granted to the creator of a creative work. Legal restrictions such as licences and end user agreements, need be documented for users and resource managers along with the identity of the holder of these rights. Each agency needs to develop consistent guidance on the use of such statement and share clear understanding of their meaning. This is often done by reference to a external body that manages the definitions of the legal constraints applied.

There is often general confusion over the restraints fields and to what they apply; metadata, resource, distribution, etc. This is a topic needing further discussion and clarification. In ISO 19115-1 two types of constraints are recognised metadataConstraints (restrictions on the access and use of metadata) and resourceConstraints (information about constraints which apply to the resources). Here we are only address constraints on Metadata.

For more discussion on the types of common legal restrictions see Resource Legal Constraints.

### **Outstanding Issues**

Are legal restictions on metadata useful? Some good legal advice on this would be very helpful! I am having some difficulty understanding the value on capturing legal restrictions on the metadata record itself. To restrict a metadata record in a catalogue largely defeats its purpose and if not open to be freely copied may be contrary to itself. What happens if a restricted metadata record is harvested? By putting a metadata record in a public catalogue are you not effectively negating any restriction on that metadata record? Boiler plate stating the openness of the metadata would be useful.



Note BC 5-7: The issue of automated harvesters gathering metadata that by legal restriction should not (a rare case I would hope) could possibly be addressed by recommending appropriate filters on the harvesters. This would need research..

#### Recommendations

Therefore - It is important to capture any legal constraints that may apply to a metadata resord. This should include licences, end user agreements, etc. If the resource is public domain, this should be cited appropriately. Many juristrictions encourage the use of open data and Creative Commons license. This should be encouraged through the use of copyright licenses such as CCO or CC By. Provide the user links to additional information about such constraints, there use and meaning. In addition, document the holder of such rights and how to contact for more information. As legal restrictions such as copyright are tied to the creator of an intellectual resource, make are that users have access to their information.

### **Crosswalk considerations**

**ISO19139** See guidance provided in MD\_Constraints

**DCAT** Maps to dct.rights as does resource legal constraints. > Note BC 22-7: Does DCAT make a distinction?

RIF-CS Agregated into Description 'notes'

#### Also Consider

- **Resource Legal Constraints** contains legal restrictions that apply to the resource cited by the metadata
- **Metadata Security Constraints** A sibling to metadata legal constraints. Contains information regarding any security restriction on the metadata.



## **Examples**

```
XML -
```

```
<mdb:MD_Metadata>
     <mdb:metadataConstraints>
        <mco:MD_LegalConstraints>
             <mco:useLimitation>
                 <gco:CharacterString>Public/gco:CharacterString>
             </mco:useLimitation>
             <mco:constraintApplicationScope>
                 <mcc:MD_Scope>
                     <mcc:level>
                          <mcc:MD_ScopeCode codeList="https://schemas.isotc211.org/19115/resources/0</pre>
                                                   codeListValue="metadata"/>
                     </mcc:level>
                 </mcc:MD_Scope>
             </mco:constraintApplicationScope>
             <mco:reference>
                 <cit:CI_Citation>
                     <cit:title>
                         <gco:CharacterString>Creative Commons 4.0 International Licence/gco:CharacterString>Creative Commons 4.0 International Licence
                     </cit:title>
                     <cit:alternateTitle>
                          <gco:CharacterString>CC By</gco:CharacterString>
                     </cit:alternateTitle>
                     <cit:edition>
                          <gco:CharacterString>4.0 International Licence/gco:CharacterString>
                     </cit:edition>
                     <cit:onlineResource>
                         <cit:CI_OnlineResource>
                              <cit:linkage>
                                  <gco:CharacterString>https://creativecommons.org/licenses/by/4.0//gco:CharacterString>https://creativecommons.org/licenses/by/4.0//gco:CharacterString>https://creativecommons.org/licenses/by/4.0//gco:CharacterString>https://creativecommons.org/licenses/by/4.0//gco:CharacterString>https://creativecommons.org/licenses/by/4.0//gco:CharacterString>https://creativecommons.org/licenses/by/4.0/
                              </cit:linkage>
                              <cit:protocol gco:nilReason="missing">
                                  <gco:CharacterString/>
                              </cit:protocol>
```



```
<cit:name gco:nilReason="missing">
         <gco:CharacterString/>
      </cit:name>
      <cit:description gco:nilReason="missing">
         <gco:CharacterString/>
      </cit:description>
      <cit:function>
         <cit:CI_OnLineFunctionCode codeList="https://schemas.isotc211.org/19</pre>
                                     codeListValue=""/>
      </cit:function>
   </cit:CI_OnlineResource>
</cit:onlineResource>
<cit:graphic>
   <mcc:MD_BrowseGraphic>
      <mcc:fileName>
         <gco:CharacterString>cc_icon_white_x2.png</gco:CharacterString>
      </mcc:fileName>
      <mcc:linkage>
         <cit:CI_OnlineResource>
            <cit:linkage>
               <gco:CharacterString>https://creativecommons.org/images/deed/
            </cit:linkage>
            <cit:protocol gco:nilReason="missing">
               <gco:CharacterString/>
            </cit:protocol>
            <cit:name gco:nilReason="missing">
               <gco:CharacterString/>
            </cit:name>
            <cit:description gco:nilReason="missing">
               <gco:CharacterString/>
            </cit:description>
            <cit:function>
               <cit:CI_OnLineFunctionCode codeList="https://schemas.isotc211.</pre>
                                           codeListValue=""/>
            </cit:function>
         </cit:CI_OnlineResource>
      </mcc:linkage>
   </mcc:MD_BrowseGraphic>
```

</cit:graphic>



```
</cit:CI_Citation>
      </mco:reference>
      <mco:responsibleParty>
         <cit:CI_Responsibility>
             <cit:role>
                <cit:CI_RoleCode codeList="https://schemas.isotc211.org/19115/resources/Code">fttps://schemas.isotc211.org/19115/resources/Code
                                  codeListValue="owner"/>
             </cit:role>
             <cit:party>
                <cit:CI_Organisation>
                   <cit:name>
                       <gco:CharacterString>OpenWork Ltd/gco:CharacterString>
                   </cit:name>
                   <cit:contactInfo>
                       <cit:CI_Contact>
                          <cit:address>
                             <cit:CI_Address>
                                <cit:electronicMailAddress>
                                    <gco:CharacterString>info@openwork.nz
                                    </gco:CharacterString>
                                </cit:electronicMailAddress>
                             </cit:CI_Address>
                          </cit:address>
                       </cit:CI_Contact>
                   </cit:contactInfo>
                </cit:CI_Organisation>
             </cit:party>
         </cit:CI_Responsibility>
      </mco:responsibleParty>
      <mco:useConstraints>
         <mco:MD_RestrictionCode
         codeList="https://schemas.isotc211.org/19115/resources/Codelist/cat
         /codelists.xml#MD_RestrictionCode" codeListValue="copyright"/>
      </mco:useConstraints>
   </mco:MD_LegalConstraints>
</mdb:metadataConstraints>
```



</mdb:MD\_Metadata>

## **UML** diagrams

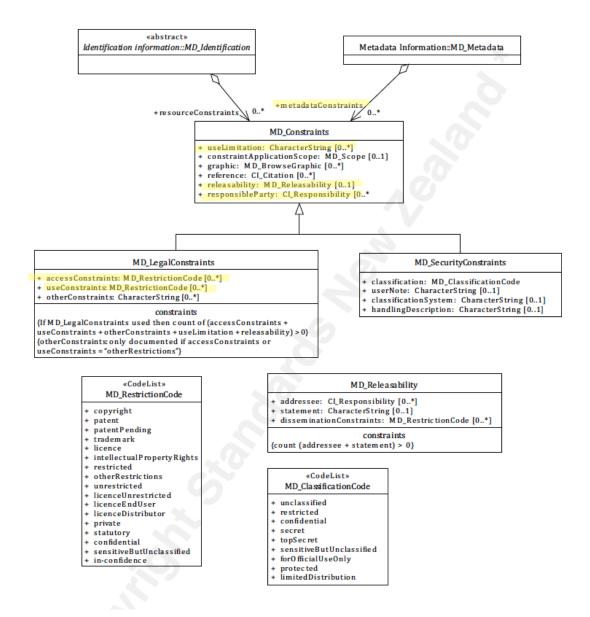



Figure 8: MetdataConstraints\_Legal



# **Metadata Security Constraints**

The presence (or absence) of security restrictions on a metadata record may be important to document. Potential users need to be informed of any restrictions and responsibilities that apply to the use of such metadata.

- Path MD\_Metadata.metadataConstraints>MD\_SecurityConstraints\*
- **Governance** National, Agency
- Purpose Resource use
- · Audience -
- machine resource -
- general 00000
- data manager 🗆 🗆 🗈
- specialist □□
- Metadata type adminsitrative
- ICSM Level of Agreement □□□

### **Definition**

Handling restrictions imposed on this metadata record for national security or similar concerns e.g. commercial sensitivity, privacy considerations.

## **ISO** Obligation

 There may be zero to many [0..\*] metadataConstraints entries for the cited resource in the MD\_Metadata package of class MD\_SecurityConstraints applied to a a metadata record,

#### **ICSM Good Practice**

• The MDWG recommends populating this element metadataConstraints with security constraint information to sufficient level to determine the security structures and restrictions on a metadata record.

**Recommended Sub-Elements** Follow the general guidance for MD\_SecurityConstraints.



This field is about recording any security restrictions on the metadata record itself - not the resource that it documents. Security constraints on metadata records is uncommon. Security is more commonly an issue with the cited resource. Resource security should be captured in Resource Security Constraints. For some agencies it may be important to capture under secrutity constraints that there are no constraints. Reference for metadata security would Include the name (primary and alternate) and version by which this security restriction on the access and use of this metadata record is known.

## **Outstanding Issues**

**How common are security constraints on metadata?** A strong use case need be cited for putting security restraints on metadata to inform readers of this document when it is important.

**Other security frameworks support** There will be cases where other security frameworks and classification systems need be cited, such as for New Zealand Defence. Instructions for how to include these are needed. Should such guidance be perscriptive or general?

#### Recommendations

Therefore - when needed, it is important to capture any security constraints that apply to a metadata resord. Provide the user links to additional information about such constraints, their use and meaning. Include the Name (primary and alternate) and version by which this security restriction on the access and use of this metadata record is known. For example when using the Australian Protective Security Policy Framework, provide access to materials from this linked website to explain this framework. (https://www.protectivesecurity.gov.au/Pages/default.aspx). In addition, document the holder of such rights and how to contact for more information. If your agency has requirements for stating that the metadata has no security constraints, do so in this element.

#### **Crosswalk considerations**

RIF-CS Agregated into Description 'notes'



### Also Consider

- **Resource Security Constraints** contains security restriction information that apply to the resource cited by the metadata
- **Metadata Legal Constraints** A sibling to metadata security constraints. Contains information regarding any legal restriction on the metadata.
- **Protective Security Policy Framework** provides information about the new security policy framework for Australia.

## **Examples**

#### XML - Geoscience Australia

Includes reference to the constraint document - Australia Protective Security Policy Framework

```
<mdb:metadataConstraints
xmlns:gmd="http://standards.iso.org/iso/19115/-3/gmd/1.0"
xmlns:geonet="http://www.fao.org/geonetwork">
  <mco:MD_SecurityConstraints>
    <mco:reference>
      <cit:CI_Citation>
        <cit:title>
          <gco:CharacterString>
            The Protective Security Policy Framework
          </gco:CharacterString>
        </cit:title>
        <cit:editionDate>
          <gco:DateTime>2018-11-01T00:00:00/gco:DateTime>
        </cit:editionDate>
        <cit:onlineResource>
          <cit:CI_OnlineResource>
            <cit:linkage>
              <gco:CharacterString>
                https://www.protectivesecurity.gov.au/Pages/default.aspx
              </gco:CharacterString>
            </cit:linkage>
            <cit:protocol>
```



```
<gco:CharacterString</pre>
              xsi:type="gco:CodeType"
              codeSpace="http://pid.geoscience.gov.au/def/schema/ga
              /IS019115-3-2016/codelist
              /ga_profile_codelists.xml#gapCI_ProtocolTypeCode">
              WWW:LINK-1.0-http--link
              </gco:CharacterString>
            </cit:protocol>
          </cit:CI_OnlineResource>
        </cit:onlineResource>
      </cit:CI_Citation>
    </mco:reference>
    <mco:classification>
      <mco:MD_ClassificationCode</pre>
      codeList="codeListLocation#MD_ClassificationCode"
      codeListValue="unclassified"/>
    </mco:classification>
 </mco:MD_SecurityConstraints>
</mdb:metadataConstraints>
```

## **UML** diagrams



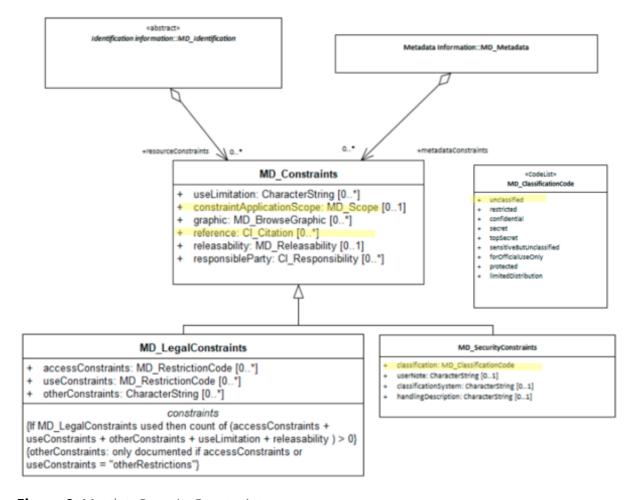



Figure 9: MetdataSecurityConstraints



## Parent Metadata

When a metadata record inherits information from a parent record, it is important to capture sufficient information so that this parent record can be found an the hierarchy preserved.

- Path MD\_Metadata.parentMetadata
- Governance Agency, Domain
- · Purpose discovery, data management
- · Audience -
- machine resource DDD
- general □□□
- data manager 💵 🖺 🖺 🖺
- specialist 🗆 🗆 🗅
- Metadata type discovery, administrative
- ICSM Level of Agreement □□

### **Definition**

Citation to a parent metadata record, to enable construction of hierarchical relations.

## **ISO** Obligation

• There may be zero or one [0..1] *MD\_Metadata.parentMetadata* entries for the cited resource in the *MD\_Metadata* package of class *CI\_Citation* in a metadata record.

#### **ICSM Good Practice**

• The element parentMetadata may be populated to sufficient level to allow discovery if the metadata has a child relationship to another metadata record. Before doing so consider if other elements such as "AssociatedResource" which has more flexiblity, is a more appropriate way to capture this information.

**Recommended Sub-Elements** Follow the general guidance for Cl\_Citation



There currently exists very little guidance for what qualifies as a parent metadata and when this element should be used. This could work well for feature level metadata where the parent is a dataset and the child a feature. Or a map series where the series is the parent and the tiles the children. Does the parent child hierarchical relation exist between the resources or the metadata records? (One metadata record could inherit attributes from a parent without such a relation between the resources being documented.) The cardinality rules only allow one parent, but it is concievable that a metadata record could inherit parts from multiple parents.

### **Outstanding Issues**

What qualifies a metadata record as a parent? If we include this as a recommended element, the MDWG should provide some guidance as to what qualifies as a parent metadata record. This is a CI\_Citation element so it has the all the capabilities of that package. We need to decide which fields are necessary given that a requirement should be a link to the parent metadata record.

#### Recommendations

TBD - insufficient clarity exist as to what qualifies a metadata record as "parent". Use cases need to be defined to illustrate yet to be determined good practice for parentMetadata.

#### Crosswalk considerations

RIF-CS Maps to RelatedInfo/relation='partOf'

## **Also Consider**

- **AssociatedResource** Used when the resource is part of a larger whole
- additionalDocumentation other documentation associated with the resource, e.g. related articles, publications, user guides, data dictionaries.
- **resourceLineage** Information about the provenance, source(s), and/or the production process(es) applied to the resource.
- **browseGraphic** associates to a large number of packages to provide linkage to associated image files, such as business or product icons and logos



• **supplementalInformation** - a free text field that is defined as "any other descriptive information about the resource".

## **Examples**

### **Example Current Use**

### XML -

```
<mdb:MD_Metadata>
  <mdb:parentMetadata>
      <cit:CI_Citation>
         <cit:title>
            <gco:CharacterString>Geographical Data Series/gco:CharacterString>
         </cit:title>
         <cit:identifier>
            <mcc:MD_Identifier>
               <mcc:code>
                  <gco:CharacterString>8668cb6b-b594-4394-8e2c-f554bace859f/gco:CharacterSt
               </mcc:code>
            </mcc:MD_Identifier>
         </cit:identifier>
         <cit:onlineResource>
            <cit:CI_OnlineResource>
               <cit:linkage>
                  <gco:CharacterString>
                  https://geodata.nz/geonetwork/srv/eng/catalog.search#
                  /metadata/8668cb6b-b594-4394-8e2c-f554bace859f
                  </gco:CharacterString>
               </cit:linkage>
               <cit:protocol gco:nilReason="missing">
                  <gco:CharacterString/>
               </cit:protocol>
               <cit:name gco:nilReason="missing">
                  <gco:CharacterString/>
               </cit:name>
```

<cit:description gco:nilReason="missing">



### **UML** diagrams

```
CI_Citation

+ title: CharacterString
+ alternateTitle: CharacterString [0..*]
+ date: CI_Date [0..*]
+ edition: CharacterString [0..1]
+ editionDate: DateTime [0..1]
+ identifier: MD_Identifier [0..*]
+ citedResponsibleParty: CI_Responsibility [0..*]
+ presentationForm: CI_PresentationFormCode [0..*]
+ series: CI_Series [0..1]
+ otherCitationDetails: CharacterString [0..*]
+ ISBN: CharacterString [0..1]
+ onlineResource: CI_OnlineResource [0..*]
+ graphic: MD_BrowseGraphic [0..*]
```

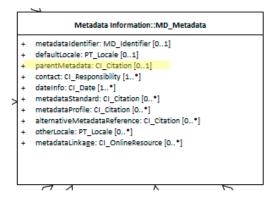



Figure 10: ParentMetadata



# Class - MD\_DataIdentification

When capturing information on a spatial resource, it is important to identify and categorise information as pertaining to the data resource and to distinguish these information from that which applies to the metadata itself or service resources. MD\_DataIdentification extends the abstract class MD\_Identification to document a spatial data resource.

- Governance ISO
- Metadata Type structural
- ICSM Level of Agreement □□

#### **Definition** -

basic information required to uniquely identify a data resource.

#### **ISO** Associations

**MD\_Identification** is an abstract class that is parent to - **MD\_DataIdentification** It is a child of - MD\_Metadata.identificationInfo

## Atributes and packages

the following provides additional gauidance to MD\_Identification.

**MDWG** Recomended - In addition to all the attributes of MD\_Identification, the additional recommended elements apply - - **Locale -** (class - PT\_Locale) [0..1] - **Extents -** (class - EX\_Extent) [0..\*] High-level thematic classifications to assist in the grouping and searching of data. Required when the hierarchyLevelName scopeCode is "dataset".

### Additional optional attributes

- otherLocale (class PT Locale) [0..\*]
- **environmentDescription** (*type charStr*) [0..1] description of the resource in the producer's processing environment, including items such as the software, the computer operating system, file name, and the dataset size
- **supplementalInformation** (*type charStr*)[0..1] any other descriptive information about the resource



Identification information about a resource is of high importance to document as this information strongly impacts on the ability of a user to asses the resource fitness to use. MD\_DataIdentification instantiates the abstract class MD\_Identification for use with data resources.

### Recommendations

### **Related Classes**

- MD\_Identification the abstract parent class to MD\_DataIdentification
- See guidances for the composite elements.

# **UML** diagrams





Figure 11: MD\_DataIdentification



### Resource Default Locale

Most spatial resources contain some textual information written in particular languages. For users it is important that the language of the resource be shared. Default Locale provide a way to record the primary language of the metadata.

**Path** - MD\_Metadata.identificationInfo>MD\_DataIdentification.defaultLocale - **Governance** - Common ICSM - **Purpose** - discovery, data management - **Audience** - - machine resource - \( \Propering \) - general - \( \Propering \Propering \) \( \Propering \) - data manager - \( \Propering \Propering \) - specialist - \( \Propering \Propering \) \( \Propering \) - **Metadata type** - descripive - ICSM Level of Agreement - \( \Propering \Propering \) \( \Propering \Propering \)

#### **Definition**

Designation of the language used within the cited resource.

### **ISO** Obligation

• There may be only one [0..1] *defaultLocale* entries for the resource in the metadata *MD\_DataIdentification* package. This must be of class *PT\_Locale*.

## **ICSM Good Practice**

• The default language in our region is English and it is recommended to be used as the language in metadata records using the 3 letter code "eng".

### **Recommended Sub-Elements**

• Follow the general guidance for *class - PT\_Locale* 

### **Recommended Sibling Elements**

- **otherLocale** *class PT\_Locale* [0..\*] when a resource has information in additional languages
- Follow the general guidance for class PT\_Locale



There may be only one default locale for a resource identified in a metadata record. The element "otherLocale" can be use to provide information about alternatively used localised character strings

#### Recommendations

Therefore - In order to meet ICSM good practice, in metadata for data resources, one default language of the resource should be captured if the resource contains language elements, and its character set encoding in MD\_DataInformation.defaultLocale. For the users in our region, English should be the default value for language using the ISO 639-2, 3-alphabetic digits code "eng" and the character encoding should be *UTF8*. If the resource contains multiple languages, capture the dominant one in defaultLocale and populate the sibling element otherLocale with information describing these additional languages in the same manner.

#### **Crosswalk considerations**

**ISO19139** MD\_DataIdentification/language and MD\_DataIdentification/characterSet moved to MD\_DataIdentification/defaultLocale:PT\_Locale - Make use of the newly added Language and character set localization package for defining local language and character set.

### **Dublin core / CKAN / data.gov.au** Maps to language

CKAN has one field for language that maps to both Metadata and Resource language fields. ISO 19115 recommends 639-2 3 letter codes. Data.gov.au recommends IETF RFC4646 2 letter codes as primary. See https://www.loc.gov/standards/iso639-2/faq.html#6 for discussion of the differences

## **DCAT** Maps to dct.language.

Note BC 19-7: It iis unclear if DCAT makes a distinction between the metadata language and the resource language

### **RIF-CS** No identified mapping



# **Also Consider**

- MD\_DataIdentification.otherLocale (codelist PT\_Locale) [0..\*] alternate localised language(s) and character set (s) used within the resource
- Metadata Default Locale (codelist PT\_Locale) [0..1] contains the language and character set used in the metadata
- **MD\_Metadata.otherLocale** (codelist PT\_Locale) [0..\*] provides information about alternatively used localised character strings provides information about alternatively used localised character strings

## **Examples**

#### XML -

```
<mdb:MD_Metadata>
   <mdb:identificationInfo>
      <mri:MD_DataIdentification>
          <mri:defaultLocale>
            <lan:PT_Locale>
               <lan:language>
                  <lan:LanguageCode</pre>
                  codeList="http://www.loc.gov/standards/iso639-2/"
                  codeListValue="eng"/>
               </lan:language>
               <lan:characterEncoding>
                  <lan:MD_CharacterSetCode</pre>
                  codeList="https://schemas.isotc211.org/19115/resources
                  /Codelist/cat/codelists.xml#MD_CharacterSetCode"
                  codeListValue="utf8"/>
               </lan:characterEncoding>
            </lan:PT Locale>
         </mri:defaultLocale>
      </mri:MD_DataIdentification>
   </mdb:identificationInfo>
```



</mdb:MD\_Metadata>

## **UML** diagrams

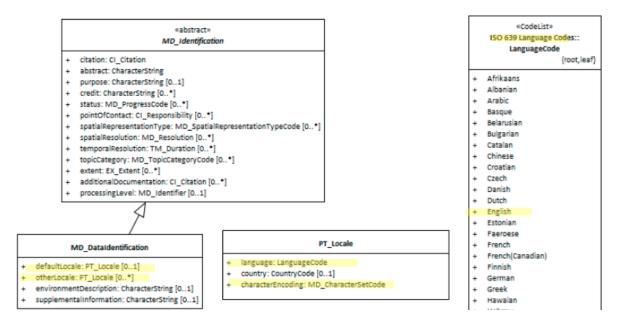



Figure 12: resourceDefaultLocale



### **Abstract**

In order to quickly find, catagorise and evaluate the fitness of a resource to our needs it is usefull to include in our metadata a human readable narrative description of the resource. This is often the most important tool to users for first pass evaluation.

- Path MD\_Metadata.identificationInfo>MD\_DataIdentification.abstract
- Governance Common ICSM, Agency, Domain
- Purpose discovery, evaluation
- · Audience -
- machine resource □□
- general 00000
- data manager 🗆 🗆 🗈
- specialist 🗆 🗆 🗅
- Metadata type descriptive
- ICSM Level of Agreement □□□□

### **Definition**

### A brief narrative summary of the cited resource.

## **ISO** Obligation

• There must be one and only one [1..1] *abstract* entries for the resource in the metadata *MD\_DataIdentification* package of type *character String* in a metadata record.

#### **ICSM Good Practice**

• Provide enough narative to give the reader a good understanding of the nature of the resource. Use common language for at least the first few statements.

### Discussion

Abstract is a mandatory element. It contains a human readable description of the resource that gives a user a first understanding of the resource. Typically, an abstract is several sentences long.



Consideration needs be given to the audience and what they need to know about the resource to decide it's utility for them.

The abstract should address the 5Ws What is it; Who generated it; When was it generated; Why was it generated; and Where is the place that it deals with. But in a general way with the most common launguage posible while still containing sufficient information to provide a good understanding of the resource to your most likely audience.

## **Outstanding Issues**

**Dublin core / CKAN / data.gov.au** Also defines this element as additional information describing or analysing the data. But while this can be static it also can be an editable wiki which anyone can contribute to instantly or via admin moderation. This latter approach is currently difficult to support in ISO 19115-1.

**DCAT** This element may also contain a table of contents, a graphical representation, or a free-text account of the resource.

**element - Purpose** Some guidance needs to be developed to guide users as to what belongs in abstract and what belongs in purpose.

### Recommendations

Therefore - An abstract should be written in a style that your human audience will easily comprehend. As this is a top level field for harvested records to general purpose catalogues, common language should be used that most people could understand. If there is a need for more technical language to describe the resource, this should be included at the end of the abstract.

The contents of an abstract should address the 5Ws What is it; Who generated it; When was it generated; Why was it generated; and Where is the place that it deals with (Time and Location). But in a general way with the most common launguage posible while still containing sufficient information.

Note BC 18-7 - The compilation of best practice Abstracts as examples to guide metadata authors in writing abstracts in a consistent manner would be of high utility.



### Crosswalk considerations

Dublin core / CKAN / data.gov.au Maps to description

**DCAT** Maps to dct.description

RIF-CS Maps to Description 'full'

#### Also Consider

- **Purpose** provides A brief summary of the intentions with which the resource was developed. Some overlap of usage with abstract may exist. The MDWG should provide some guidance as to what belongs in abstract and what belongs in purpose
- MD\_DataIdentification.supplimentalInformation provides a description of the resource in the producer's processing environment, including items such as the software, the computer operating system, file name, and the dataset size.

### **Examples**

#### **ABARES**

\*TOPO\_2.5M is a national seamless data product aimed at regional or national applications. The data are suitable for location or distribution mapping at a small scale and can be readily combined with other data products. TOPO\_2.5M is an intermediate product between AUSLIGS TOPO\_10M (data at 1:10 million scale) and TOPO\_250K (data at 1:250 000 scale). It has been specifically designed for map production and does not carry the additional attributes which support GIS analysis. TOPO\_2.5M is topologically structured including closed polygons and properly intersecting lines and is comprised of the following themes Built-up Areas, Framework, Localities, Roads, Railways, Streams, Waterbodies and Reefs. The user guide can be accessed at a link provided below. Link to licence and licence conditions //Baldric/publicmetadata/data/glompr\_gm\_001/glompr\_gm00111a00pdf\_\_\_/licence\_template.pdf. The licence allows the use of the data for any maps (including Internet applications) but the data itself must not be supplied to any third party. All products must include an appropriate copyright statement.\*



## GA

Publicly available bathymetry and geophysical data has been used to map geomorphic features of the Antarctic continental margin and adjoining ocean basins at scales of 1:1-2 million. The key bathymetry datasets used were GEBCO08 and ETOPO2 satellite bathymetry (Smith & Sandwell 1997), in addition to seismic lines in key areas. Twenty-seven geomorphic units were identified based on interpretation of the seafloor bathymetry with polygons digitised by hand in ArcGIS. Seafloor features were classified largely based on the International Hydrographic Organisation (2001) classification of undersea features, and expanded to include additional features, including those likely to have specific substrate types and influence on oceanography. This approach improves the technique as a predictor of physical conditions that may influence seafloor communities. The geomorphic map has been used for developing a benthic bioregionalisation and for developing a representative system of Marine Protected Areas for East Antarctica. Slight modifications have been made since original publication in O'Brien et al. 2009 and Post et al. 2014. These include: - updating of some feature names; - combining "wave affected banks" with "shelf banks" - Combining "coastal terrance" with "island coastal terrane" as "Coastal/Shelf Terrane" - replacing canyon vectors with polygons by using a buffer around the vectors Further details of the original mapping can be found in: O'Brien, P.E., Post, A.L., Romeyn, R., 2009. Antarctic-wide geomorphology as an aid to habitat mapping and locating Vulnerable Marine Ecosystems, Commission for the Conservation of Antarctic Marine Living Resources Vulnerable Marine Ecosystems Workshop, Paper WS-VME-09/10. CCAMLR, La Jolla, California, USA. Post, A.L., Meijers, A.J.S., Fraser, A.D., Meiners, K.M., Ayers, J., Bindoff, N.L., Griffiths, H.J., Van de Putte, A.P., O'Brien, P.E., Swadling, K.M., Raymond, B., 2014. Chapter 14. Environmental Setting, In: De Broyer, C., Koubbi, P., Griffiths, H.J., Raymond, B., d'Udekem d'Acoz, C., et al. (Eds.), Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp. 46-64.

# AAD

This dataset is a collection of aerial images taken from a camera mounted in the fuse-lage of the CASA-212 400 aircraft used to survey for pygmy blue whales. Line transect data from that survey are also available (but see Gill, P.C., Pirzl, R., Morrice, M.G. and Lawton, K. (2015). "Cetacean diversity of the continental shelf and slope off southern australia." The Journal of Wildlife Management 79(4): 672-681 for more details). The digital images were taken with a Nikon D200 camera, using a 35mm lens. The survey altitude was approximately 1500 ft. Images have full EXIF data attached. Image



footprints are approximately 204 m along-track by 306 m across track, with some image overlap. Aerial images; downward facing images along track from a line transect survey. There are ~41K jpeg images. Images taken with Nikon D200 camera, with 35 mm lens. Aerial survey altitude was approximately 1500 ft. Each image has a water-surface footprint of 204 m along-track by 306 m across track; there is some image overlap along-track. The EXIF data for each image is populated. Images taken in January 2012 along the Bonney Upwelling, along the south-east coast of Australia, an area known to be a summer (Nov-May) feeding ground for pygmy blue whales; the surveys focussed on the area bounded by 138.0-145.0°E and 36.6-40.3°S.

#### **TERN**

The Cumberland Plain flux station is located in a dry sclerophyll forest in the Hawkesbury Valley in central New South Wales. Operation commenced for the station in September 2012 and is managed by the Hawkesbury Institute for the Environment at Western Sydney University. The Cumberland Plain Woodland is now an endangered ecological community that encompasses distinct groupings of plants growing on clayey soils. The canopy is dominated by Eucalyptus moluccana and Eucalyptus fibrosa, which host an expanding population of mistletoe. Average canopy height is 23m, the elevation of the site is 20m and mean annual precipitation is 800mm. Fluxes of water vapour, carbon dioxide and heat are quantified with the open-path eddy flux technique from a 30 m tall mast. Additional measurements above the canopy include temperature, humidity, wind speed and direction, rainfall, incoming and reflected shortwave and longwave radiation and net, diffuse and direct radiation and the photochemical reflectance index. In addition, profiles of humidity and CO2 are measured at eight levels within the canopy, as well as measurements of soil moisture content, soil heat fluxes, soil temperature, and 10-hr fuel moisture dynamics. In addition, regular monitoring of understory species abundance, mistletoe infection, leaf area index and litterfall are also performed.

# data.gov.au

The Department of Human Services Service Centre locator contains information updated weekly, a search function and maps.



## **XML**

```
<mdb:MD_Metadata>
 <mdb:identificationInfo>
   <mri:MD_DataIdentification>
      <mri:abstract>
        <gco:CharacterString>
       This is an example dataset to demonstrate the use of ISO 19115-3.
       Below is a sample abstract reprinted from the document AS/NZS ISO
        19115.1:2015. Location of all current mineral Exploration Licences
        issued under the Mining Act, 1971. Exploration Licences provide
        exclusive tenure rights to explore for mineral resources for up to
        a maximum of 5 years. Comment is sought on applications for
       Exploration Licences from numerous sources before granting.
       Exploration programs are subject to strict environmental and
       heritage conditions. Exploitation of identified resources must be
       made under separate mineral production leases.
        </gco:CharacterString>
      </mri:abstract>
   </mri:MD_DataIdentification>
 </mdb:identificationInfo>
</mdb:MD_Metadata>
```

# **UML** diagrams

Recommended elements highlighted in Yellow



```
«abstract»
                                                      MD Identification
icUsage
  + citation: CI_Citation
  + abstract: CharacterString
  + purpose: CharacterString [0..1]
  + credit: CharacterString [0..*]
  + status: MD_ProgressCode [0..*]

    pointOfContact: CI_Responsibility [0..*]

    spatialRepresentationType: MD_SpatialRepresentationTypeCode [0..*]

    spatialResolution: MD_Resolution [0..*]

    temporalResolution: TM_Duration [0..*]

    topicCategory: MD_TopicCategoryCode [0..*]

  extent: EX_Extent [0..*]
  + additionalDocumentation: CI_Citation [0..*]
      processingLevel: MD_Identifier [0..1]
```

Figure 13: abstract

# **Purpose**

One of the useful ways to evaluate the fitness of a resource to our needs is to examine the purpose for which the resource was created and how well it fulfilled its intended purpose. The MD\_DataIdentification.purpose\* element is designed to hold such information.\*

- Path MD\_Metadata.identificationInfo>MD\_DataIdentification.pupose
- Governance Common, Agency, Domain
- Purpose discovery, evaluation
- · Audience -
- machine resource □
- general 00000
- data manager 🗆 🗆 🗈
- specialist DDDD
- Metadata type descriptive
- ICSM Level of Agreement □□□□

# **Definition**

A brief summary of the intentions with which the resource was developed



# **ISO** Obligation

• There may be no more than one [0..1] *purpose* entries for the resource in the *MD\_DataIdentification* package of type *character string* in a metadata record.

#### **ICSM Good Practice**

• Populate the *purpose* element and provide enough narrative to give the reader a good understanding of the intent for which the resource was created. Use common language as far as possible as the readers may come from a different domain.

## Discussion

A purpose statement provides a brief description of the reason a resource was created. Knowing this can give a good guide to potential usefulness of a resource to other potential users.

Consideration needs be given to the audience and what they need to know about the resource to decide it's utility for them.

A purpose statement is generally shorter than an abstract and should be written in a style that your human audience will easily comprehend. The purpose should capture the "why" a dataset was created and to what end it is used. Common language should be used that most people could understand. If there is a need for more technical language to describe the resource, this should be included at the end of the purpose statement.

# **Outstanding Issues**

**DCAT** Description may include but is not limited to: an abstract, a table of contents, a graphical representation, or a free-text account of the resource.

**element - Purpose vs abstract** Some guidance needs to be developed to guide users as to what belongs in abstract and what belongs in purpose.

#### Recommendations

Therefore - Keep the purpose statement generally shorter than your abstract and write in a style that your human audience will easily comprehend. Capture the "why" a resource



was created and to what end it is used. Use common language that most people could understand. If there is a need for more technical language to describe the resource, this should be included at the end of the purpose statement.

The contents of a purpose should include as much information as would be useful to indicate the alignment of the original purpose and potential users' requirements.

#### Crosswalk considerations

**Dublin core** / **CKAN** / **data.gov.au** Maps to *description*?

**DCAT** Maps to *dct.description* (as does *abstract*)

**RIF-CS** Maps to *dct.description* 

#### Also Consider

- **Abstract** provides somewhat more lengthy verbal summary description of the resource. Some overlap of usage with purpose may exist. The MDWG should provide some guidance as to what belongs in abstract and what belongs in purpose
- MD\_DataIdentification.supplimentalInformation provides a description of the resource in the producer's processing environment, including items such as the software, the computer operating system, file name, and the dataset size.
- **Resource Lineage** may contain information related to purpose.

# **Examples**

## **ABARES**

The Australian Surveying and Land Information Group (AUSLIG) has the responsibility for providing topographic mapping information at a national scale. AUSLIG has undertaken the Australian Geographic Database program to enhance this topographic map information so it is suitable for use in Geographic Information Systems. The data resulting from this program are known as GEODATA. Each GEODATA product incorporates characteristics such as customer focus, national consistency, assured quality and comprehensive documentation.



#### **TERN**

The purpose of the Cumberland Plain flux station is: to quantify the exchanges of carbon dioxide, water vapour and energy in a dry sclerophyll forest. to characterize the functional behaviour and sensitivity of the different components contributing to the ecosystem carbon balance from sub-daily to multi-annual temporal scales and under climatic variability. to identify the role of hydraulic limitations on constraining ecosystem productivity. to quantify the impact of mistletoe on plant physiological processes and whole ecosystem water vapour and carbon dioxide exchange. to validate remote sensing estimates of different radiation components to obtain accurate regional predictions of fuel moisture and to understand how wood traits and microbial diversity interact to determine rates of wood decay.

#### XML -

## **UML** diagrams

Recommended elements highlighted in Yellow



```
«abstract»
                                                  MD_Identification
sage
+ citation: CI_Citation
+ abstract: CharacterString
+ purpose: CharacterString [0..1]
+ credit: CharacterString [0..*]
+ status: MD_ProgressCode [0..*]
+ pointOfContact: CI_Responsibility [0..*]

    spatialRepresentationType: MD_SpatialRepresentationTypeCode [0..*]

+ spatialResolution: MD_Resolution [0..*]
+ temporalResolution: TM_Duration [0..*]
+ topicCategory: MD_TopicCategoryCode [0..*]
+ extent: EX_Extent [0..*]
+ additionalDocumentation: CI_Citation [0..*]
+ processingLevel: MD_Identifier [0..1]
```

Figure 14: purpose



# Resource Status

In order to quickly find, catagorise and evaluate the fitness of a resource to our needs it is usefull to include in our metadata a high level description of the progress status of the resource our metadata descibes.

- Path MD\_Metadata.identificationInfo>MD\_DataIdentification.status
- Governance Common ICSM
- **Purpose** discovery, management
- · Audience -
- machine resource □□□
- general 0000
- data manager 🗆 🗆 🗈
- specialist 🗆 🗆 🗆
- Metadata type descriptive, administrative
- ICSM Level of Agreement □□□

## **Definition**

# The status of the resource populated from a domain of values

# **ISO** Obligation

• There can be zero to many [0..\*] *status* entries for the cited resource in the *MD\_DataIdentification* package selected from codelist *MD\_ProgressCode*.

#### **ICSM Good Practice**

• At least one instance of this element should be populated in all metadata records.

# Possible Values for status (codelist - MD\_ProgressCode)

- completed has been completed
- historicalArchive stored in an offline storage facility
- obsolete no longer relevant
- onGoing continually being updated



- *planned* fixed date has been established upon or by which the resource will be created or updated
- required needs to be generated or updated
- underDevelopment currently in the process of being created
- final progress concluded and no changes will be accepted
- pending committed to, but not yet addressed
- *retired* item is no longer recommended for use. It has not been superseded by another item
- superseded replaced by new
- tentative provisional changes likely before resource becomes final or complete
- *valid* acceptable under specific conditions
- accepted agreed to by sponsor
- notAccepted rejected by sponsor
- withdrawn removed from consideration
- proposed suggested that development needs to be undertaken
- deprecated resource superseded and will become obsolete, use only for historical purposes

### Discussion

According to the ISO model, a resource may exist in many states. Not all values are mutual exclusive. This element is optional and has only been lightly discussed. As it has been determined a valuable element we may want to increase these recommendations.

# **Outstanding Issues**

**Abstract Class - MD\_Identification** SpatialRepresentationType is one of many elements belonging to the abstract class MD\_Identification. MD\_Identification is only instantiated as MD\_DataIdentification or SV\_ServiceIdentification. At this stage we are not addressing service metadata, We are assuming all metadata is for data resources. At a later time, when we include Service metadata guidance, a seperate discussion of MD\_Identifier should be made.

**CKAN** It has been indicatcated that CKAN records in its related field booloen values for this item. Boolean does not map well to ISO domain values. Some options in the



MD\_ProgressCode are noncampatible some are compatible. Clarification and validation would be useful.

#### Recommendations

Therefore - The status of a resource is valuable information to those who may want to use it. It is recommended that the status field be populated and regularly updated as needed. As harvesting of metadata to more geeneral purpose catalogues is desirable, some thought need be given to crosswalk with boolean values (CKAN) or those that only accept one occurrence of this element. Values for this element must come from the MD\_ProgressCode codelist.

#### Crosswalk considerations

Dublin core / CKAN / data.gov.au Maps to data status

# **Examples**

```
XML -
```



# **UML** diagrams

Recommended elements highlighted in Yellow

# «CodeList» MD\_ProgressCode completed historicalArchive obsolete onGoing planned required underDevelopment pending retired superseded tentative valid accepted notAccepted withdrawn proposed deprecated

```
"abstract"
MD_Identification

+ citation: CI_Citation
+ abstract: CharacterString [0..1]
+ credit: CharacterString [0..*]
+ status: MD_ProgressCode [0..*]
+ pointOfContact: CI_Responsibility [0..*]
+ spatialRepresentationType: MD_SpatialRepresentationTypeCode [0..*]
+ spatialResolution: MD_Resolution [0..*]
+ temporalResolution: TM_Duration [0..*]
+ topicCategory: MD_TopicCategoryCode [0..*]
+ extent: EX_Extent [0..*]
+ additionalDocumentation: CI_Citation [0..*]
+ processingLevel: MD_Identifier [0..1]
```

Figure 15: status



# **Topic Category**

Categorisation of a resource against a standardised thematic keyword list provides a useful way to filter and discover resources.

- **Path** MD\_Metadata.identificationInfo>MD\_DataIdentification.topicCategory
- Governance Common ICSM, Agency, Domain
- Purpose discovery, evaluation
- · Audience -
- machine resource □□□
- general 00000
- data manager 🗆 🗆 🗈
- specialist 🗆 🗆 🗅
- Metadata type descriptive
- ICSM Level of Agreement □□□

#### **Definition**

# The main themes of the resource populated from a fixed domain of values

# **ISO** Obligation

• There may zero to many [0..\*] *topicCategory* entries for the cited resource in the *MD\_DataIdentification* package in a metadata record selected from the enumeration *MD\_TopicCategoryCode*.

#### **ICSM Good Practice**

 Populate of the topicCategory element as many times as useful for search and categorisation of the resource. Values are restricted to those provided by MD\_TopicCategoryCode

**Possible Values for** *topicCategory* Type enumeration - MD\_TopicCategoryCode - **farming** - rearing of animals and/or cultivation of plants - Examples: agriculture, irrigation, aquaculture, plantations, herding, pests and diseases affecting crops and livestock - **biota** - flora and/or fauna in natural environment - Examples: wildlife, vegetation, biological sciences,



ecology, wilderness, sealife, wetlands, habitat - boundaries - legal land descriptions - Examples: political and administrative boundaries - climatologyMeteorologyAtmosphere - processes and phenomena of the atmosphere - Examples: cloud cover, weather, climate, atmospheric conditions, climate change, precipitation - economy - economic activities, conditions and employment - Examples: production, labour, revenue, commerce, industry, tourism and ecotourism, forestry, fisheries, commercial or subsistence hunting, exploration and exploitation of resources such as minerals, oil and gas - **elevation -** height above or below a vertical datum - Examples: altitude, bathymetry, digital elevation models, slope, derived products - **environment -** environmental resources, protection and conservation - Examples: environmental pollution, waste storage and treatment, environmental impact assessment, monitoring environmental risk, nature reserves, landscape - geoscientificInformation - information pertaining to earth sciences - Examples: geophysical features and processes, geology, minerals, sciences dealing with the composition, structure and origin of the earth's rocks, risks of earthquakes, volcanic activity, landslides, gravity information, soils, permafrost, hydrogeology, erosion - imageryBaseMapsEarthCover - base maps - Examples: land cover, topographic maps, imagery, unclassified images, annotations - intelligenceMilitary - military bases, structures, activities - Examples: barracks, training grounds, military transportation, information collection - inlandWaters - inland water features, drainage systems and their characteristics - Examples: rivers and glaciers, salt lakes, water utilisation plans, dams, currents, floods, water quality, hydrographic charts - location - positional information and services - Examples: addresses, geodetic networks, control points, postal zones and services, place names - **oceans -** features and characteristics of salt water bodies (excluding inland waters) - Examples: tides, tidal waves, coastal information, reefs - **planningCadastre -** information used for appropriate actions for future use of the land - Examples: land use maps, zoning maps, cadastral surveys, land ownership **society -** characteristics of society and cultures - Examples: settlements, anthropology, archaeology, education, traditional beliefs, manners and customs, demographic data, recreational areas and activities, social impact assessments, crime and justice, census information - structure - man-made construction Examples: buildings, museums, churches, factories, housing, monuments, shops, towers - transportation - means and aids for conveying persons and/or goods - Examples: roads, airports/airstrips, shipping routes, tunnels, nautical charts, vehicle or vessel location, aeronautical charts, railways - utilitiesCommunication - energy, water and waste systems and communications infrastructure and services - Examples: hydroelectricity, geothermal, solar and nuclear sources of energy, water purification and distribution, sewage collection and disposal, electricity and gas distribution, data communication, telecommunication, radio, communication networks - extraTerres**trial -** region more than 100 km above the surface of the Earth - **disaster -** Information related to disasters - Examples: site of the disaster, evacuation zone, disaster-prevention



facility, disaster relief activities

## Discussion

The Resource Topic Category is recommended in ISO 19115.1-2015 as a metadata element to be used for discovery of geospatial resources. It provides high level filtering of data using standardised terms from the enumeration MD\_Topic CategoryCode. This enumeration cannot be extended and should not be as it is the fixed nature that makes this element of particular value. These values allow metadata aggregated from anywhere in the world to be sorted and filtered into like categories - such as is done in a faceted search interface. Search results can be easily sorted by humans and machines. If this list were extensible, this would not be as effective.

Many resources may fit into multiple categories. ISO199115-1 allows multiple instances of topicCategory to accomodate such instances. Discussions need be made as to when an aspect of the resource is too minor to include an instance of the MD\_TopicCategoryCode value.

Topic categories are essentially keywords, but of a particular enumeration. Like other keywords, search engines and indices use these to provide search support. If a topic category code satisfies the need for a particular keyword, it is probably unbeneficial to include that value as part of your Keywords.

## **Outstanding Issues**

**GeoNetwork issues** NOTE BC 11-6: GeoNetwork 3.6 ISO 19115-3 template currently lacks the domain restriction tools on the editor for Topic category. It also lacks multiplicity on his element. Pointers to the codelist do not appear in the records for MD\_TopicCategoryCode. This needs to be fixed.

### Recommendations

Therefore - in order to comply with ICSM best guidance, include at least one instance of topicCategory in the metadata for your resource to provide high level filtering and categorisation of data. Multiple values may be captured and this is encouraged as to avoid the lack of discovery due to too narrow categorisations. This field is particularly useful in faceted search interfaces such as GeoNetwork.



It is not recommended that this list be extended as its value is in part due to the standardised values it contains. Extended values, if needed are better captured in other keyword fields.

#### Crosswalk considerations

**ISO19139** This element, along with spatialRepresentationType and spatialResolution, were moved from MD\_DataIdentification to MD\_Identification in order to allow their use for service identification. Two new values were added to this enumeration: *extraTerrestrial* and *disaster* from the ISO19139 version.

**Dublin core / CKAN / data.gov.au** Maps to ISO 19115 topic

**DCAT** Maps to *dcat:keyword* 

**RIF-CS** Maps to Subject

## **Also Consider**

- **Keywords** provides a more lengthy flexible system to attach keywords including from custom thesari and free text.
- **Resource Scope** holds keyword identifying the type of resource, e.g. service, a collection, an application which the metadata describes
- **Spatial Representation Type** holds keywords related to the spatial type of the resource, such as vector, grid, tin, etc.

# **Examples**

#### **XML**



## **UML** diagrams

```
#abstract*
#MD_Identification

+ citation: CI_Citation
+ abstract: CharacterString
+ purpose: CharacterString [0..1]
+ credit: CharacterString [0..*]
+ status: MD_ProgressCode [0..*]
+ pointOfContact: CI_Responsibility [0..*]
+ spatialRepresentationType: MD_SpatialRepresentationTypeCode [0..*]
+ spatialResolution: MD_Resolution [0..*]
+ temporalResolution: TM_Duration [0..*]
+ topicCategory: MD_TopicCategoryCode [0..*]
+ extent: EX_Extent [0..*]
+ additionalDocumentation: CI_Citation [0..*]
+ processingLevel: MD_Identifier [0..1]
```

Recommended elements highlighted in Yellow



# **Spatial Resolution**

To be useful for its given purpose geospatial data is recorded at an appropriate level of generalisation. This helps reduce overhead and can give a more useful product for the scale it is designed to be used. Too much data can be as much a problem as too little. Providing users this information allows better judgement as to the fitness of the resource to their purpose.

- Path MD\_Metadata.identificationInfo>MD\_DataIdentification.spatialResolution
- Governance Common ICSM
- Purpose discovery, evaluation
- Audience -
- machine resource □□
- general 00000
- data manager □□□
- specialist 🗆 🗆 🗅
- Metadata type structural
- ICSM Level of Agreement □□□

#### Definition

The nominal scale and/or spatial resolution of the resource.

## **ISO** Obligation

• There may zero to many [0..\*] *spatialResolution* entries for the cited resource in the *MD\_DataIdentification* package of class *MD\_Resolution* in a metadata record.

## **ICSM Good Practice**

• The *spatialReolution* package should be populated with enough information to give the reader a good understanding of the spatial scale at which the resource was designed to be used.

**Recommended Sub-Elements MD\_Resolution** [1..1] is a class of type *Union* (meaning only one attribute from the available list can be used) that provides level of detail expressed as a scale factor, a distance or an angle. Similar to codelist, one and only one [1..1] must be chosen per spatailResolution instance. Possible attribute choice include: - **equivalentScale** 



- (class MD\_RepresentativeFraction) level of detail expressed as the scale of a comparable hardcopy map or chart MD\_RepresentativeFraction derived from ISO/TS 19103 Scale where MD\_RepresentativeFraction.denominator = 1 / Scale.measure And Scale.targetUnits = Scale.sourceUnits \* denominator integer the number below the line in a vulgar fraction distance (type Distance)
- \* horizontal ground sample distance \* Distance: This class is documented in full in ISO/TS 19103. Includes unitOfMeasure attribute \* UnitOfMeasure: This class is documented in full in ISO/TS 19103. **vertical** (type Distance)
- \* vertical sampling distance \* Distance: This class is documented in full in ISO/TS 19103. Includes unitOfMeasure attribute \* UnitOfMeasure: This class is documented in full in ISO/TS 19103. **angularDistance** (type Angle)
- \* angular sampling measure \* Angle: Amount of rotation needed to bring one line or plane into coincidence with another, generally measured in radians or degrees. This class is documented in full in ISO/TS 19103. \* UnitOfMeasure: This class is documented in full in ISO/TS 19103. **levelOfDetail -** (*type charStr*) brief textual description of the spatial resolution of the resource

#### Discussion

Scale is a fundemental concept of sptial data. *SpatialResolution* is the element that captures this.

*SpatialResolution* is most commonly represented as a factor which provides a general understanding of the density of spatial data in the resource or describes the range of resolutions in which a digital resource may be used. This element should be repeated when describing upper and lower range.

*SpatialResolution* is recommended in ISO 19115.1-2015 as a metadata element to be used for discovery of geospatial resources.

*SpatialResolution* has no value of its own. The spatialResolution type are selectable from the class MD\_Resolution.

## **Outstanding Issues**

**Scale has little meaning in digital context** The most common way of capturing spatial resolution is as a denominator value using equivalentScale. While this made intuitive sense in the days of paper maps printed at a particular size, scales such as 1: 20,000 have little real meaning when the size of a map is totally dependent on the dis-



play sceen. Will younger spatial professionals who may only have passing knowledge of fixed scale maps relate to this value? Will it have meaning to the young neo-geo? It would be useful to work towards expressing scale, a fundamental concept in geospatial data, in a more digitally friendly way. Perhaps something like standardised zoom levels? Would "distance", sampling size be of greater use? Most relatable would be something like "zoom level" which could be captured in "level of detail" but there is currently a lack of standardisation as to what terms like "zoom level" mean. Also, he levelOfDetail option lacks citation support that would be needed to make this usable in such a manner. Work on Discreet Global Grid Systems (DGGS) may provide some guidance to this topic.

#### Recommendations

Therefore - capture the spatial resolution of a resource as it is useful information for determining the fitness to purpose of geospatial data. Data gathered at too high or too low a resolution may make it unfit to your needs. Mixing data of different resolutions can give uncertain results. Spatial resolution provides a rough guide to the precision and accuracy of a resource. (Data quality elements should be used to document precision and accuracy more fully.)

Spatial resolution can be documented in many ways. For ISO19115-1, these are limited to the methods itemised in the class MD\_Resolution and documented above. Equivalent scale is the default of many systems, including supplied templates in GeoNetwork. It is captured with a single denominator value such as "20,000" as in a 1:20,000 map.

Note BC 19-7: Do we recommend equivalent scale as default?

#### Crosswalk considerations

**Dublin core / CKAN / data.gov.au** Maps to?

**DCAT** Maps to?

**RIF-CS** Maps to?



# Also Consider

- **Spatial Representation Type** Documents the method used to spatially represent geographic information
- dataQualityInfo>MD\_DataQuality TBD From ISO19157 quality information for the data specified by a data quality scope

# **Examples**

#### **ABARES**

```
<mri:spatialResolution><mri:MD_Resolution>
   <mri:distance><gco:Distance uom="metre">123</gco:Distance>
   </mri:distance>
</mri:MD_Resolution></mri:spatialResolution>
<mri:spatialResolution><mri:MD_Resolution>
   <mri:angularDistance>
       <gco:Angle uom="degreeLatitude">0.1
   </mri:angularDistance>
</mri:MD_Resolution></mri:spatialResolution>
<mri:spatialResolution>
   <mri:MD_Resolution>
       <mri:angularDistance>
           <gco:Angle uom="degreeLongitude">0.05</gco:Angle>
       </mri:angularDistance>
   </mri:MD_Resolution>
</mri:spatialResolution>
<mri:spatialResolution>
   <mri:MD_Resolution>
       <mri:vertical>
           <gco:Distance uom="metre">123
       </mri:vertical>
   </mri:MD Resolution>
</mri:spatialResolution>
```



## GA

Note BC 11-6: This example from GA, shown here as levelOfDetail, would more appropriately be captured as equivalentScale. But interestingly, this information is sharing the range in which the data are useful. This is a useful approach, but is this standard sufficiently able to support this?

#### XML -



# **UML** diagrams

Recommended elements highlighted in Yellow

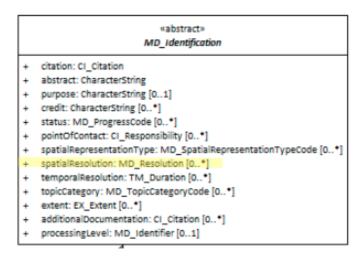
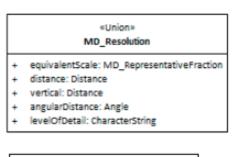




Figure 16: spatialResolution





# Resource Point of Contact

One of the most important pieces of information that can be shared in a metadata record is the resource Point of Contact. By retrieving the means to access the party responsible for questions about the resource, all other information should be able to be obtained even if it is not in the metadata.

- **Path** MD\_Metadata.identificationInfo>MD\_DataIdentification.pointOfContact
- Governance Agency
- **Purpose** Discovery, Management, Communications
- · Audience -
- machine resource □□
- general 00000
- data manager 🗆 🗆 🗅 🗅
- specialist □□□
- Metadata type descriptiver
- ICSM Level of Agreement □□□□

## Definition

The name and contact information for the organisation, role and/or individual that serves as the point of contact for the cited resource.

## **ISO** Obligation

• There may be one or more [0..\*] *pointOfContact* packages for the cited resource in the *MD\_DataIdentification* package for those responsible for the resource. These will be of class *CI\_Responsibility*.

#### **ICSM Good Practice recommendation**

 This element should be populated in all metadata records with a minimum of role, name (of organisation preferred), positionName and electrronicMailAddress for rgw primary contact for more information about the cited resource. Use "partyldentifier" where possible.



**Recommended Sub-Elements** Follow the general guidance for CI\_Responsibility. - One value of role should be "Point of Contact", but may be another depending on agency guidance, e.g. if a custodian is also the primary point of contact, *custodian* may be the most appropriate choice for role. - **partyIdentifier** - (class - MD\_Identifier) [0..\*] identifier for the party, usual a URI such as an ORCID. Use of this package is recommended when the option exist. > Note BC 30-7: Do we have some regional alternatives to ORCID to recommend?

#### Discussion

This element exists for the provision of a set of attributes for identification of, and means of communication with , person(s) and organisation(s) associated with the resource. This element refers to the party responsible for the resource itself and the maintenance of this resource. It does not refer to the party responsible for the metadata or the distribution of the resource.

This is a compound element of type CI\_ResponsibleParty. At least one should be present. Recommended role value - "PointOfContact" with attached email. Other contacts can be added as required. Other role values are acceptable.

## Recommendations

Therefore - In order to meet ICSM good practice, in all metadata records, at least one point of contact should be given for the party responsible for the cited resource. These should deefault to role code "Point of Contact". In addition, for minimal conformity, name (of organisation preferred), positionName and electrronicMailAddress should also be populated. The use of the new partyIdentifier element added in the 2018 ammendment to the standard is encouraged by all parties.

## **Crosswalk considerations**

**ISO19139** See discussion at CI\_Responsibility

**Dublin core / CKAN / data.gov.au** Maps to contact > Note BC 19-7: These map to the same elements as Metadata Contact. Is this a problem?

DCAT Maps to dcat:contactPoint



# RIF-CS Maps to Related Party

## Also Consider

- **Metadata Responsible Party** Contact information for the recommended party to contact about the metadata
- **Resource Cited Reponsible Party** contact information for the parties otherwise responsible for aspects of the the resource creation and maintenance.
- **DistributionInfo** Includes Distributor contact information.

# **Examples**

## **XML**

```
<mdb:MD_Metadata>
  <mdb:identificationInfo>
      <mri:MD_DataIdentification>
. . . .
        <mri:pointOfContact>
            <cit:CI_Responsibility>
               <cit:role>
                  <cit:CI_RoleCode
                  codeList="https://schemas.isotc211.org/19115/resources
                  /Codelist/cat/codelists.xml#CI RoleCode"
                  codeListValue="custodian"/>
               </cit:role>
               <cit:party>
                  <cit:CI_Organisation>
                     <cit:name>
                        <gco:CharacterString>OpenWork LtdCharacterString>
                     </cit:name>
                     <cit:contactInfo>
                        <cit:CI_Contact>
                           <cit:address>
                              <cit:CI_Address>
                                 <cit:electronicMailAddress>
```



```
<gco:CharacterString>email@mail.com
                                     </gco:CharacterString>
                                  </cit:electronicMailAddress>
                               </cit:CI_Address>
                           </cit:address>
                        </cit:CI_Contact>
                     </cit:contactInfo>
                     <cit:individual>
                        <cit:CI_Individual>
                           <cit:name>
                               <gco:CharacterString>Metadata Bob
                               </gco:CharacterString>
                           </cit:name>
                           <cit:positionName>
                               <gco:CharacterString>GIS Guru
                               </gco:CharacterString>
                           </cit:positionName>
                        </cit:CI_Individual>
                     </cit:individual>
                  </cit:CI_Organisation>
               </cit:party>
            </cit:CI_Responsibility>
         </mri:pointOfContact>
. . . .
      </mri:MD_DataIdentification>
  </mdb:identificationInfo>
</mdb:MD_Metadata>
```

## **UML** diagrams

Recommended elements highlighted in Yellow



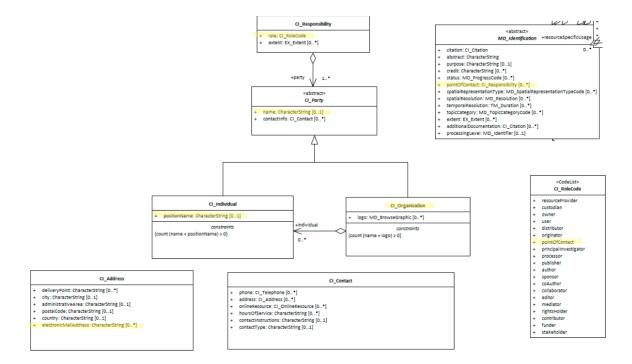



Figure 17: Responsibility



# **Additional Documentation**

A cited resource may have any number of related documents such as articles, publications, user guides, data dictionaries that are useful in applying the resource to desired purposes. Often these are difficult to discover and manage. Capturing these in the metadata is recommended.

- **Path** MD\_Metadata.identificationInfo>MD\_DataIdentificationr.additionalDocumentation
- **Governance** *Domain, Agency*
- Primary use Data Management, Resource Use
- · Audience -
- machine resource -
- general 🛛 🖺 🗎
- data manager 🗆 🗆 🗅 🗅
- specialist DDDDD
- Metadata type descriptive
- ICSM Level of Agreement □□□

## **Definition**

Citation of other documentation associated with the resource, e.g. related articles, publications, user guides, data dictionaries.

## **ISO** Obligation

There may be zero to many [0..\*] *additionalDocumentation* packages for the cited resource in the *MD\_DataIdentification* package of class Cl\_Citation in the metadata record.

#### **ICSM Good Practice recommendation**

This element should be populated in all metadata records with a minimum of title, identifier, date and citedResponsibleParty. If posible, use the link to the metadata for the cited additional documentation as its landing page.

#### **Recommended Sub-Elements**

• **title** - (*type* - *charStr*) [1..1] mandatory for citations, the name by which the cited resource is known



- **date** (class CI\_Date) recommended, the reference date for the cited resource. In addition, some direction should be given about how to access the cited additional resource.
- **onlineResource** (class CI\_OnlineResource) [0..\*] a description of how to access the cited additional resource online
- **citedResponsibleParty** (class CI\_Responsibility) [0..\*] contact information for someone who can give guidance about accessing the cited additional resource

#### Discussion

To make best use of a given resource, additional documentation may be useful or required. Providing instructions for accessing these documents can greatly enhance the value of a resource to its users and providers. Capturing these additional documents in the metadata is also helpful to resource managers who need to properly track the linkages between a resource and its documentation.

## **Outstanding Issues**

**DCAT** Previously captured DCAT related documentation on this elements calls what is considered the equivalent "A free-text account of the catalog." Mapping seems incorrect.

## Recommendations

Therefore to make best use of a given resource capturing the the links to additional documentation related to this resource is highly recommended. Capture those documents of the highest value to your most likely community of users. If posible, include some reference to documentation or its metadata that can be easily understood by lay people and label this accordingly.

#### Crosswalk considerations

**DCAT** Maps to dct.description free-text

RIF-CS Maps to Description 'notes'



# Also Consider

- MD\_DataIdentification.supplementalInformation is defined as "any other descriptive information about the resource".
- **MD\_AssociatedResource** contains information about resources of which this resource is a piece. Association types are taken from the DS\_AssociationTypeCode.

# **Examples**

## **XML**

```
<mdb:MD_Metadata>
   <mdb:identificationInfo>
      <mri:MD_DataIdentification>
         <mri:additionalDocumentation>
            <cit:CI_Citation>
               <cit:title>
                  <gco:CharacterString>Usage guide</gco:CharacterString>
               </cit:title>
               <cit:date>
                  <cit:CI_Date>
                     <cit:date>
                         <gco:Date>2019-07-01</gco:Date>
                     </cit:date>
                     <cit:dateType>
                         <cit:CI_DateTypeCode codeList="https://schemas.isotc211.org/19115/re</pre>
                                              codeListValue="creation"/>
                     </cit:dateType>
                  </cit:CI_Date>
               </cit:date>
               <cit:citedResponsibleParty>
                  <cit:CI_Responsibility>
                     <cit:role>
                         <cit:CI_RoleCode
                         codeList="https://schemas.isotc211.org/19115/resources
```

/Codelist/cat/codelists.xml#CI\_RoleCode"



```
codeListValue="custodian"/>
      </cit:role>
      <cit:party>
         <cit:CI_Organisation>
            <cit:name>
               <gco:CharacterString>OpenWork Ltd/gco:CharacterString>
            </cit:name>
            <cit:contactInfo>
               <cit:CI_Contact>
                  <cit:address>
                     <cit:CI Address>
                        <cit:electronicMailAddress>
                         <gco:CharacterString>info@openwork.nz
                         </gco:CharacterString>
                        </cit:electronicMailAddress>
                     </cit:CI_Address>
                  </cit:address>
               </cit:CI_Contact>
            </cit:contactInfo>
            <cit:individual>
               <cit:CI_Individual>
                  <cit:name>
                     <gco:CharacterString>Byron Cochrane
                     </gco:CharacterString>
                  </cit:name>
               </cit:CI_Individual>
            </cit:individual>
         </cit:CI_Organisation>
      </cit:party>
   </cit:CI_Responsibility>
</cit:citedResponsibleParty>
<cit:onlineResource>
  <cit:CI_OnlineResource>
      <cit:linkage>
         <gco:CharacterString>https://openwork-nz.github.io
         /Resources/2019/04/25/gn-plugins.html
         </gco:CharacterString>
      </cit:linkage>
```



```
<cit:protocol gco:nilReason="missing">
                        <gco:CharacterString/>
                     </cit:protocol>
                     <cit:name gco:nilReason="missing">
                        <gco:CharacterString/>
                     </cit:name>
                     <cit:description gco:nilReason="missing">
                        <gco:CharacterString/>
                     </cit:description>
                     <cit:function>
                        <cit:CI_OnLineFunctionCode codeList=</pre>
                        "https://schemas.isotc211.org/19115/resources/Codelist
                        /cat/codelists.xml#CI_OnLineFunctionCode"
                        codeListValue=""/>
                     </cit:function>
                  </cit:CI_OnlineResource>
               </cit:onlineResource>
            </cit:CI_Citation>
         </mri:additionalDocumentation>
      </mri:MD_DataIdentification>
  </mdb:identificationInfo>
</mdb:MD_Metadata>
```

# **UML** diagrams

Recommended elements highlighted in Yellow



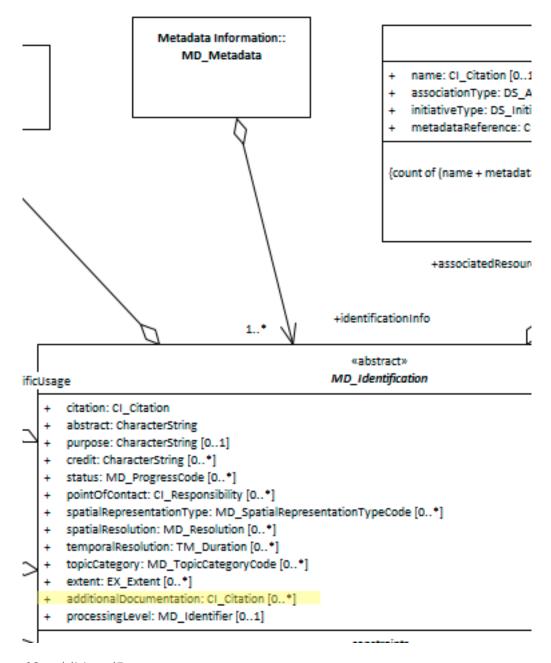



Figure 18: additionalDoc



# **Spatial Representation Type**

In order to quickly find, catagorise and evaluate the fitness of a resource to our needs it is useful to include in our metadata a high level description of the type or format of spatial data the resource contains.

- Path MD\_Metadata.identificationInfo>MD\_DataIdentification.spatialRepresentationType
- Governance Common ICSM, Domain
- **Purpose** discovery
- · Audience -
- machine resource □□□
- general 0000
- data manager 🗆 🗆 🗈
- specialist □□□
- Metadata type structural
- ICSM Level of Agreement □□□

## **Definition**

The method used by the resource to spatially represent geographic information.

# **ISO** Obligation

• There can be zero to many [0..\*] *spatialRepresentationType* entries for the cited resource in the *MD\_DataIdentification* package selected from codelist *MD\_SpatialRepresentationTypeCode*.

#### **ICSM Good Practice**

• At least one instance of this element should be populated in all metadata records containing spatial information.

**Possible Values for** *spatialRepresentationType* From codelist - *MD\_SpatialRepresentationTypeCode()* - *vector* - vector data is used to represent geographic data - *grid* - grid data is used to represent geographic data - *textTable* - textual or tabular data is used to represent geographic data - *tin* - triangulated irregular network - *stereoModel* - three-dimensional view formed



by the intersecting homologous rays of an overlapping pair of images - *video* - scene from a video recording

#### Discussion

A resource may consist of many spatial representation types. It may also contain no spatial representation types. Most commonly, a geospatial resource will consist of a single representation type.

#### Recommendations

Therefore - If a resource contains spatial representations, to provide guidance to users, the type of spatial representation(s) should be captured using this element. Further Spatial representation details could be captured in the optional spatialRepresentationInfo package.

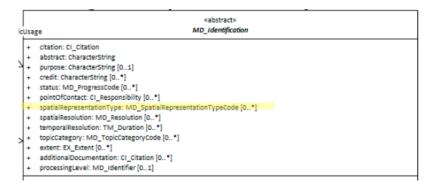
Values for this element must come from the MD\_SpatialRepresentationTypeCode codelist.

#### **Crosswalk considerations**

**ISO19139** MD\_DataIdentification/spatialRepresentationType moved from MD\_DataIdentification to MD\_Identification in order to allow their use for service identification. In practice, when creating metadata for data, this change is not noticable.

# Also Consider

• MD\_Metadata.spatialRepresentationInfo - Abstract class that decribes the digital mechanism used to represent spatial information. Not detailed by MDWG


# **Examples**

XML -

<mdb:MD\_Metadata>

• • • •





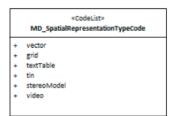



Figure 19: spatialRepresentationType



# **Associated Resource**

Geospatial data and service often are part of a larger collection of resources. Geospatial practitioners need to be provided linkages to these associated resources of which a given resource is a part. There are many types of associated resources, spatial and non-spatial. Associated resources can also provide useful path for discovery.

- Path MD\_Metadata.identificationInfo>MD\_DataIdentification.associateResource
- Governance Agency, Domain
- **Purpose** Resource use, Discovery
- · Audience -
- machine resource □□
- general □□□
- resource manager  $\Box\Box\Box$
- specialist DDDDD
- Metadata type administrative, descriptive
- ICSM Level of Agreement □□□

#### Definition

# An entity to indicate association between resources and records related to the resources

## ISO Obligation -

• In a metadata record there should be zero to many [0..\*] associatedResources packages for the cited resource in the MD\_DataIdentification package of class MD\_AssociatedResource that relate a resource to other resources. These should be of type DS\_AssociationTypeCode.

# **ICSM** Recommended Sub-Elements

- **associationType** (codelist DS\_AssociationTypeCode) [1..1] Mandatory for associated resource citations one name for the type of relationship
- crossReference reference from one resource to another
- largerWorkCitation reference to a master resource of which this one is a part
- partOfSeamlessDatabase part of same structured set of data held in a computer



- stereoMate part of a set of imagery that when used together, provides threedimensional images
- isComposedOf reference to resources that are parts of this resource
- collectiveTitle common title for a collection of resources
- series associated through a common heritage such as produced to a common product specification
- dependency associated through a dependency
- revisionOf resource is a revision of associated resource
- name (class Cl\_Citation) {0..\*]} citation information about the associated resource
- Optional sub elements
- **initiativeType** (codelist DS\_InitiativeTypeCode) [0..1] type of initiative under which the associated resource was produced
- **metadataReference** (class Cl\_Citation) [0..1] reference to the metadata of the associated resource

#### Discussion

When important aspects or information about a spatial resource are derived by the association of this resource to others, it is useful that these associations be documented in the metadata so as these can be captured and discovered. Doing so provides important avenues for additional data discovery. Some resources are indeed of little use unless combined with others of which they are a part.

# **Outstanding Issues**

**Geonetwork support** Support of associated resources for iso19115-3 in GeoNetwork 3.6 seems limited and perhaps broken. This needs investigation.

#### Other discussion

**DCAT** Def - A resource with an unspecified relationship to the catalogued item. Notes - Use only if more specific subproperty is not available. Sub-properties of dct:relation in particular dcat:distribution, dct:hasPart, (and its sub-properties dcat:catalog, dcat:dataset, dcat:service), dct:isPartOf, dct:conformsTo, dct:isFormatOf, dct:hasFormat, dct:isVersionOf, dct:hasVersion, dct:replaces, dct:isReplacedBy, dct:references, dct:isReferencedBy, dct:requires, dct:isRequiredBy



#### Recommendations

Therefore - in order to provide an effective way to document, preserve and provide discovery of associated resources, these relations should be documented in the metadata. At a minimum this should include a name, description of the relationship and link to the to the resource or its metadata. In contraxt to additionalDocumentation which can be thought of as outputs used to describe and understand a cited resource, an associatedResource is something that is of a piece of, or an input to, the cited resource.

#### Crosswalk considerations

**ISO19139** MD\_AssociatedResource replaces MD\_AggregateInformation to clarify its role as a mechanism for associating resources. Changes include:

- $\bullet \ \ MD\_Associated Resource/name: CI\_Citation \ replaces \ MD\_AggregateInformation/aggregateDatasetName \ and \ aggregateDatasetName \$
- The name this role was simplified along with the change to the name of the class.
- MD\_AggregateInformation/aggregateDataSetIdentifier
- This MD\_Identifier was removed because the MD\_Identifier in the name:CI\_Citation can be used to provide an identifier for the associated resource.
- MD AssociatedResource /metadataReference:Cl Citation was added
- This new element was added to avoid ambiguity about whether the name:CI\_Citation refers to a resource or to metadata for that resource. Now it is clear that name:CI\_Citation refers to the resource and the metadataReference refers to metadata for that resource.

**Dublin core / CKAN / data.gov.au** TBD {mapping to *DC element* and discussion???}

**DCAT** Maps to dct:relation

**RIF-CS** Maps to "Related Information"

#### Also Consider

• additionalDocumentation - other documentation associated with the resource, e.g. related articles, publications, user guides, data dictionaries.



- **resourceLineage** Information about the provenance, source(s), and/or the production process(es) applied to the resource.
- **browseGraphic** associates to a large number of packages to provide linkage to associated image files, such as business or product icons and logos
- **supplementalInformation** a free text field that is defined as "any other descriptive information about the resource".

# **Examples**

#### **XML**

```
<mdb:MD_Metadata>
  </mdb:identificationInfo>
    </mri:MD_DataIdentification>
      <mri:associatedResource>
        <mri:MD_AssociatedResource>
          <mri:name>
            <cit:CI Citation>
              <cit:title>
                <gco:CharacterString>Big Project</gco:CharacterString>
              </cit:title>
            </cit:CI_Citation>
          </mri:name>
          <mri:associationType>
            <mri:DS_AssociationTypeCode codeList="https://schemas.isotc211.org</pre>
            /19115/resources/Codelist/cat/codelists.xml#DS_AssociationTypeCode"
            codeListValue="largerWorkCitation"/>
          </mri:associationType>
        </mri:MD_AssociatedResource>
      </mri:associatedResource>
    </mri:MD_DataIdentification>
  </mdb:identificationInfo>
</mdb:MD_Metadata>
```



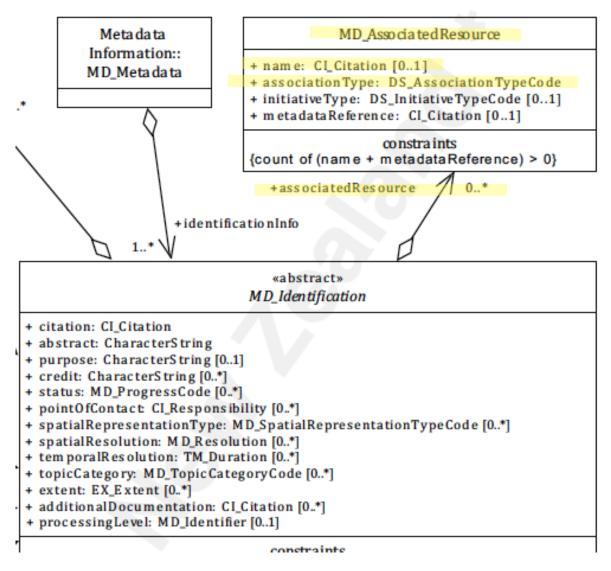



Figure 20: associateResource



# **Resource Format**

Information about how a cited spatial resource is kept on the host system can be useful to individuals such as subject matter specialist and data managers. General audiences will be more interested in the distribution format.

- **Path** MD\_Metadata.identificationInfo>MD\_DataIdentification.resourceFormat
- Governance Agency
- · Audience -
- machine resource DDDD
- general 🛘
- data manager 💵 🖺 🖺 🖺
- specialist □□□
- Metadata type administrative
- ICSM Level of Agreement □□□

#### **Definition**

Description of the computer language construct that specifies the representation of the data objects in a record, file, message, storage device, or transmission channel

## **ISO** Obligation

There may be zero or many [0..\*] *resourceFormats* for the cited resource in the *MD\_DataIdentification* package of class *MD\_Format* described in a metadata record.

#### **ICSM Good Practice**

This element should be populated in all metadata records with information about the format in which the resource is stored and managed within the agency, This is not about the format inwhich the resource is distributed which often differs.

**Recommended Sub-Elements** From class - *MD\_Format* \* **formatSpecificationCitation** - (class - Cl\_Citation) citation/URL of the specification for the format \* **medium** - (class - MD\_Medium) medium used by the format



#### Discussion

Knowledge of the native format of a resource provides a user that has direct access to such a great deal of insight as to how the resource might fit their need. It also provides a specialist user insight as to the technical limitations and capabilities of the resource. It is of high value to data managers as it provides invaluable information about the storage and use of these resources which the manager can use to know how to provide future support. Most external users would likely be more interested in the distribution format.

#### **Outstanding Issues**

**CORE ISSUE:** This element seems to be about the native format in which the data is kept by an organisation. This may or may not be the same as the distribution format. It is the distribution format that most people would want to know from a metadata record (except internal users).

**Applied to SV\_ServiceIdentification** This element makes more sense when applied to service metadata. In that case the resource format is what is of interest as the service is the distribution channel.

#### Recommendations

Therefore - it is recommended that format information about a resource be captured in the metadata. The details to include are to be at the best judgement of the managers and direct users of the resource.

It is not recommended, except in the case of service information metadata, that this element be used to hold distribution format information. That is better conveyed in distributionFormat element under MD\_Distribution.

#### Crosswalk considerations

Dublin core / CKAN / data.gov.au likely unneeded unless a service

**DCAT** mapping as yet unknown



## Also Consider

• **MD\_Distribution.distributionFormat** - holds information about the format in which the data is distributed.

# **Examples**

## **XML**

```
<mdb:MD_Metadata>
  <mdb:identificationInfo>
      <mri:MD_DataIdentification>
         <mri:resourceFormat>
           <mrd:MD_Format>
              <mrd:formatSpecificationCitation>
                 <cit:CI_Citation>
                    <cit:title>
                        <gco:CharacterString>PostGIS
                    </cit:title>
                 </cit:CI_Citation>
               </mrd:formatSpecificationCitation>
               <mrd:medium>
                 <mrd:MD_Medium>
                    <mrd:name>
                       <cit:CI_Citation>
                          <cit:title>
                             <gco:CharacterString>My Cloud
                             </gco:CharacterString>
                          </cit:title>
                       </cit:CI_Citation>
                    </mrd:name>
                  </mrd:MD_Medium>
               </mrd:medium>
           </mrd:MD_Format>
        </mri:resourceFormat>
      . . . .
```



```
</mri:supplementalInformation>
  </mri:MD_DataIdentification>
    ....
</mdb:MD_Metadata>
```

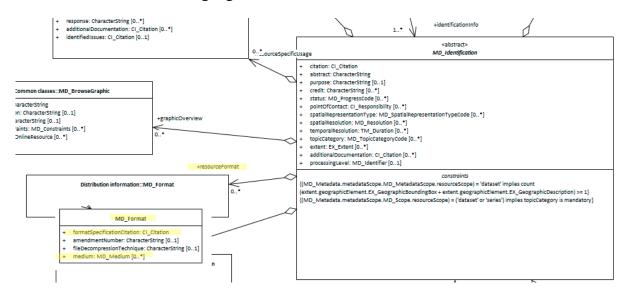



Figure 21: resourceFormat



# **Resource Graphic Overview**

Geospatial data and service are largely visual by nature. Geospatial practicianers tend to be visually oriented. Browse graphics are a way of including in the metadata visual clues as to the nature and usefulness of resources.

- **Path** MD\_Metadata.identificationInfo>MD\_DataIdentification.graphicOverview
- Governance Agency, Domain
- Purpose Discovery
- · Audience -
- machine resource -
- general 00000
- resource manager 🛛 🗎
- specialist 🗆 🗆 🗆
- Metadata type descriptive
- ICSM Level of Agreement □□□

#### **Definition**

## A graphic that provides an illustration of a resource

NOTE - Should include a legend for the graphic, if applicable.

EXAMPLE - A dataset, an organisation logo, security constraint or citation graphic...

#### **ISO** Obligation

In a metadata record there should be zero to many [0..\*] *graphicOverview* packages for the cited resource in the *MD\_DataIdentification* package of class *MD\_BrowseGraphic* in a metadata record.

### **ICSM Good Practice**

A graphic overview image of the resource should be included in the metadata and typically include the name linkage to the graphic.



**Recommended Sub-Elements** From class *MD\_BrowseGraphic* - **fileName** - (*type* - *CharStr*) [1..1] Mandatory for browse graphic elements - name of the file that contains a graphic that provides an illustration of the resource. - **linkage** - (*class* - *Cl\_OnlineResource*) [0..\*] - link to browse graphic. - Optional: - **imageConstraints** - (*class* - *MD\_Constraints*) [0..\*] - restriction on access and/or use of browse graphic - **fileType** - (*type* - *CharStr*) [0..\*] - format in which the illustration is encoded (e.g.: EPS, GIF, JPEG, PBM, PS, TIFF, PDF) - **extent** - (*class* - *EX\_Extent*) [0..\*] Information about the horizontal, vertical and temporal extent of the resource specified by the scope

#### Discussion

Geospatial professionals by nature, rely to a large extent on visual information to gain understanding of resources. Browse graphics provide in the metadata a way to communicate with users visually.

## **Outstanding Issues**

**Geonetwork support** Support of browse graphics for iso19115-3 in GeoNetwork 3.6 seems limited and perhaps broken. This needs investigation.

#### Recommendations

Therefore - in order to provide a quick way for users to discover and identify the resource they need, provide a graphic overview in the metadata. At a minimum this should include a name and link to the image.

#### Crosswalk considerations

**ISO19139 browseGraphic** is a new package in iso19115-1. New elements include: - **MD\_BrowseGraphic.imageConstraint** (class - MD\_Constraints) - This new element was added in order to allow the specification of constraints on a browse graphic associated with a resource. - **MD\_BrowseGraphic.linkage** (class - Cl\_OnlineResource) - This new element was added in order to allow a straightforward specification of the link to the browse graphic and the capability to add additionalinformation (name, description, ...) about that graphic.



## **Also Consider**

- MD\_BrowseGraphic associates to a large number of packages for different purposes, such as business or product icons and logos
- CI\_OnLineFunctionCode This codelist contains an option browseGraphic

# **Examples**

#### XML -

```
<mdb:MD_Metadata>
    <mdb:identificationInfo>
      <mri:MD_DataIdentification>
         <mri:citation>
            <cit:CI_Citation>
               <cit:graphic>
                  <mcc:MD_BrowseGraphic>
                     <mcc:fileName>
                        <gco:CharacterString>
                        https://static.wixstatic.com/media
                        /414fd2_2f712656fb5547f39a08a53aab98cc29~mv2.png/v1
                        /fill/w_92,h_146,al_c,q_80,usm_0.66_1.00_0.01
                        /IFaGR9yg.webp</gco:CharacterString>
                     </mcc:fileName>
                     <mcc:linkage>
                        <cit:CI_OnlineResource>
                           <cit:linkage>
                              <gco:CharacterString>
                              https://static.wixstatic.com/media
                              /414fd2_2f712656fb5547f39a08a53aab98cc29~mv2.png
                              /v1/fill/w_92,h_146,al_c,q_80,usm_0.66_1.00_0.01
                              /IFaGR9yg.webp
                              </gco:CharacterString>
                           </cit:linkage>
                           <cit:protocol>
                              <gco:CharacterString>
```



```
WWW:LINK-1.0-http--link
                               </gco:CharacterString>
                           </cit:protocol>
                           <cit:name gco:nilReason="missing">
                               <gco:CharacterString/>
                           </cit:name>
                           <cit:description gco:nilReason="missing">
                               <gco:CharacterString/>
                           </cit:description>
                           <cit:function>
                               <cit:CI_OnLineFunctionCode codeList=</pre>
                               "https://schemas.isotc211.org/19115/resources
                               /Codelist/cat/codelists.xml#CI_OnLineFunctionCode"
                               codeListValue="browseGraphic"/>
                           </cit:function>
                        </cit:CI_OnlineResource>
                     </mcc:linkage>
                  </mcc:MD_BrowseGraphic>
            </cit:CI Citation>
         </mri:citation>
      </mri:MD_DataIdentification>
   </mdb:identificationInfo>
</mdb:MD_Metadata>
```



# MD\_BrowseGraphic

- + fileName : CharacterString
- + fileDescription : CharacterString [0..1]
- + fileType: CharacterString [0..1]
- + imageConstraints : MD\_Constraints [0..\*]
- + linkage : CI\_OnlineResource [0..\*]

Figure 22: browseGraphic



## **Resource Citation**

Some of the most basic needs of users of a resource is citation information. This basic information includes title, edition, identifier, dates, responsible parties, etc. In ISO 19115-1 we capture this information in MD\_identification.citation.

- Path MD\_Metadata.identificationInfo>MD\_DataIdentification.citation
- Governance Common ICSM, Agency, Domain
- Purpose Discovery, identification
- · Audience -
- machine resource □□□
- general 00000
- data manager 🗆 🗆 🗈
- specialist □□□
- Metadata type descriptive
- ICSM Level of Agreement □□□□

#### **Definition**

# Citation information for the resource.

## **ISO** Obligation

• There must be one and only one [1..1] MD\_Metadata,indentificationInfo>MD\_Identification.citation package for the cited resource in the MD\_DataIdentification package in a metadata record. this must be of class CI\_Citation.

#### **ICSM Good Practice**

• This element should be populated in all metadata records with a minimum of title, identifier, date and citedResponsibleParty.

**Recommended Sub-Elements** Follow the general guidance for **CI\_Citation** with emphasis on the following elements: - **title** - (*type* - *charStr*)[1..1] Mandatory - name by which the cited resource is known - **date** - (*class* - *CI\_Date*) [0..\*] reference date for the cited resource. Should include at a minimum, the creation date for the resource. - **edition** - (*type* -



charStr) [0..1] version of the cited resource if appropriate - **identifier** - (class - MD\_Identifier) [0..\*] value uniquely identifying an object within a namespace. Recommend provision of a resolvable URI following the MD\_Identifier guidance. - **citedResponsibleParty** - (class - Cl\_Responsibility)[0..\*] roles, name, contact, and position information for an individual or organisation that is responsible for the resource. It is recommended that a party with the role "Point of Contact" be provided as well as an entry for "publisher". - **series** - (class - Cl\_Series) [0..1] If needed, information about the series, or aggregate resource, of which the resource is a part should be included.

#### Discussion

The citation package contains multiple elements from CI\_Citation. Only child elements contain content. Follow the links on the child elements above for further discussion. Aspects of the contents of this package may be governed at different levels.

#### Recommendations

Therefore - because many of the elements of MD\_Identification.citation are mandatory and are important for identification and harvesting of metadata, it is recommended the the guidance provided in each of these six child elements be followed. Other available CI\_Citation elements should be used if needed to properly document your resource. Consult your metadata governance team on such use.

### Also Consider

- title
- · date
- edition
- identifier
- citedResponsibleParty
- series

# **Examples**

## **XML**

<mdb:MD\_Metadata>



```
<mdb:identificationInfo>
  <mri:MD_DataIdentification>
      <mri:citation>
         <cit:CI_Citation>
            <cit:title>
               <gco:CharacterString>OpenWork geographical data
               </gco:CharacterString>
            </cit:title>
            <cit:date>
               <cit:CI_Date>
                  <cit:date>
                     <gco:Date>2019-07-18</gco:Date>
                  </cit:date>
                  <cit:dateType>
                     <cit:CI_DateTypeCode
                     codeList="https://schemas.isotc211.org/19115/resources
                     /Codelist/cat/codelists.xml#CI_DateTypeCode"
                     codeListValue="creation"/>
                  </cit:dateType>
               </cit:CI_Date>
            </cit:date>
            <cit:date>
               <cit:CI_Date>
                  <cit:date>
                     <gco:Date>2019-07-18</gco:Date>
                  </cit:date>
                  <cit:dateType>
                     <cit:CI_DateTypeCode
                     codeList="https://schemas.isotc211.org/19115/resources
                     /Codelist/cat/codelists.xml#CI_DateTypeCode"
                     codeListValue="publication"/>
                  </cit:dateType>
               </cit:CI_Date>
            </cit:date>
            <cit:edition>
               <gco:CharacterString>Version 0.1/gco:CharacterString>
```



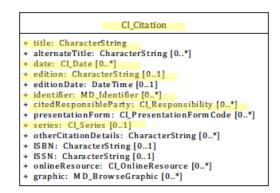
```
</cit:edition>
<cit:editionDate>
   <gco:Date>2019-07-18</gco:Date>
</cit:editionDate>
<cit:identifier>
   <mcc:MD_Identifier>
      <mcc:code>
         <gco:CharacterString>
         9547e07e-6a15-403b-8b19-488778fe0cf0
         </gco:CharacterString>
      </mcc:code>
      <mcc:codeSpace>
         <gco:CharacterString>
         http://202.49.243.69:8080/geonetwork/srv/eng/metadata/
         </gco:CharacterString>
      </mcc:codeSpace>
   </mcc:MD_Identifier>
</cit:identifier>
<cit:citedResponsibleParty>
   <cit:CI_Responsibility>
      <cit:role>
         <cit:CI_RoleCode
         codeList="https://schemas.isotc211.org/19115/resources
         /Codelist/cat/codelists.xml#CI_RoleCode"
         codeListValue="author"/>
      </cit:role>
      <cit:party>
         <cit:CI_Organisation>
            <cit:name>
               <gco:CharacterString>OpenWork Ltd
               </gco:CharacterString>
            </cit:name>
            <cit:contactInfo>
               <cit:CI_Contact>
                  <cit:address>
                     <cit:CI_Address>
                        <cit:electronicMailAddress>
                           <gco:CharacterString>info@openwork.nz
```



```
</gco:CharacterString>
                        </cit:electronicMailAddress>
                     </cit:CI_Address>
                  </cit:address>
               </cit:CI Contact>
            </cit:contactInfo>
         </cit:CI_Organisation>
      </cit:party>
   </cit:CI_Responsibility>
</cit:citedResponsibleParty>
<cit:citedResponsibleParty>
   <cit:CI_Responsibility>
      <cit:role>
         <cit:CI_RoleCode
         codeList="https://schemas.isotc211.org/19115/resources
         /Codelist/cat/codelists.xml#CI_RoleCode"
         codeListValue="publisher"/>
      </cit:role>
      <cit:party>
         <cit:CI_Individual>
            <cit:name>
               <gco:CharacterString>Byron Cochrane
               </gco:CharacterString>
            </cit:name>
            <cit:contactInfo>
               <cit:CI_Contact>
                  <cit:address>
                     <cit:CI_Address>
                        <cit:electronicMailAddress>
                           <gco:CharacterString>byron@openwork.nz
                           </gco:CharacterString>
                        </cit:electronicMailAddress>
                     </cit:CI_Address>
                  </cit:address>
               </cit:CI_Contact>
            </cit:contactInfo>
         </cit:CI_Individual>
      </cit:party>
```



```
**abstract**
MD_Identification


+ citation: CL_Citation
+ abstract: CharacterString [0.1]
+ credit: CharacterString [0.1]
+ credit: CharacterString [0.2]
+ status: MD_ProgressCode [0.2]
+ pointOfContact: CL_Respons ibility [0.2]
+ spatialRepresentationType: MD_SpatialRepresentationTypeCode [0.2]
+ spatialResolution: MD_Resolution [0.2]
+ temporalResolution: TM_Duration [0.2]
+ topicCategory: MD_TopicCategory Code [0.2]
+ extent: EX_Extent [0.2]
+ additionalDocumentation: CLCitation [0.2]
+ processingLevel: MD_Identifier [0.1]

constraints

([MD_MetadatametadataScopeMD_MetadataScoperesourceScope)='dataset' implies count (extent_geographicElementEX_GeographicBoundingBox + extent_geographicElementEX_GeographicDescription) >= 1}

([MD_MetadatametadataScopeMD_ScoperesourceScope) = ('dataset' or 'series') implies topicCategory is mandatory)
```







## Resource Title

The most important component of the Resource Citation is the **title** element. In order to easily communicate about a resource and at least locally differentiate it from others, it is useful that the resource has a common name. This name is captured in the Resource Citation **title** element.

- **Path** MD\_Metadata.identificationInfo>MD\_DataIdentification.citation>CI\_Citation.title
- Governance Common ICSM, Agency, Domain
- Purpose Discovery, identification
- · Audience -
- machine resource -
- general 00000
- data manager 🗆 🗆 🗅
- specialist □□□
- Metadata type descriptive
- ICSM Level of Agreement □□□□

#### **Definition**

The most common useful name by which the resource is known.

## **ISO** Obligation

• There must be one and only one [1..1] *title* element for the cited resource in the *MD\_DataIdentification.citation* package in a metadata record of type *charater string*.

#### **ICSM Good Practice**

• All metadata records must have the element *MD\_Metadata,indentificationInfo>MD\_Identification.citati* populated with the most common useful name by which the resource is known.

### Discussion

The value of the title field should be the most common name by which the resource is known by your largest perceived audience. It should be relatively unique or made so by inclusion of expanded title elements such edition numbers or agency name.



There can be multiple alternate titles captured for a resource in the sibling element alternateTitle. These should be populated with other known names or variations of the name.

#### Recommendations

Therefore - There must be one title given for a resource. The value of the title field should be the most common name by which the resource is known by your largest perceived audience. It should be relatively unique or made so by inclusion of expanded title elements such edition numbers or agency name.

Use the sibling element alternateTitle to capture other names by which the resource may be known. Index both title and alternateTitle in the same index to increase the likelihood that the resource may be found by the title that others may know it.

If the title is not a common language name, at least one alternate title should be common language title such as a lay person may identify it.

#### Crosswalk considerations

**Dublin core / CKAN / data.gov.au** Maps to title

**DCAT** Maps to dct.title

**RIF-CS** Maps to Title

## Also Consider

- alternateTitle (type charStr) [0..\*] Sibling to title. A short name or other language name by which the cited information is known. Example: DCW as an alternative title for Digital Chart of the World. Recommended whenever there are alternate names commonly in use.
- **Resource Citation** parent to this element



# **Examples**

# **Example Current Use**

**ABARES** "2.5M Topographical Series 1998 MAPDATA TOPO\_2.5M Scale 1:2.5 Million"

**GA** "Geomorphic features of the Antarctic and Southern Ocean 2012"

Data.govt.au Location of Medicare Offices

#### **XML**

```
<mdb:MD_Metadata>
   <mdb:identificationInfo>
      <mri:MD_DataIdentification>
         <mri:citation>
            <cit:CI_Citation>
               <cit:title>
                  <gco:CharacterString>OpenWork geographical data<</pre>
                  /gco:CharacterString>
               </cit:title>
               <cit:alternateTitle>
                  <gco:CharacterString>geodata by OpenWork</gco:CharacterString>
               </cit:alternateTitle>
            </cit:CI_Citation>
         </mri:citation>
      </mri:MD_DataIdentification>
   </mdb:identificationInfo>
</mdb:MD_Metadata>
```

# **UML** diagrams



```
CI_Citation

+ title: CharacterString
+ alternateTitle: CharacterString [0..*]
+ date: CI_Date [0..*]
+ edition: CharacterString [0..1]
+ edition: CharacterString [0..1]
+ identifier: MD_identifier [0..*]
+ identifier: MD_identifier [0..*]
+ citedResponsibleParty: CI_Responsibility [0..*]
+ presentationForm: CI_PresentationFormCode [0..*]
+ series: CI_Series [0..1]
+ otherCitationDetails: CharacterString [0..*]
+ ISBN: CharacterString [0..1]
+ ISSN: CharacterString [0..1]
+ onlineResource: CI_OnlineResource [0..*]
+ graphic: MD_BrowseGraphic [0..*]
```

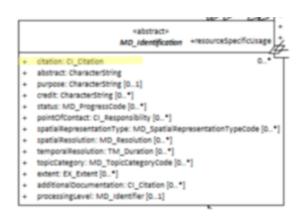



Figure 24: title



# Resource Identifier

An important component of the Resource Citation is the resource identification element. Similar to the Metadata Identifier, this element hold a code that uniquely identifies the resource and differentiates it from all others. With this, machines and humans can differentiate, reference and link to the resource without ambiguity

- Path MD\_Metadata.identificationInfo>MD\_DataIdentification.citation>CI\_Citation.identifier
- Governance Common, Agency, Domain
- Purpose linkage, identification
- · Audience -
- machine resource DDDD
- general 🛘
- data manager □□□
- specialist □□
- Metadata type administrative
- ICSM Level of Agreement □□□□

#### Definition

## Alphanumeric identifier uniquely identifying this cited resource.

# **ISO** Obligation

• This is an ISO optional element. There may be zero or many [0..\*] *identifier* entries for the cited resource in the *MD\_DataIdentification.citation* package of class *MD\_Identifier* in a metadata record.

#### **ICSM Good Practice**

• The MDWG recommends this element be populated in all metadata records, preferably with a resolvable URI that points to a landing page for the resource. This landing page may be the authoritative metadata record.

**Recommended Sub-Elements** Follow the general guidance for **MD\_Identifier** with emphasis on the following elements: - **code** - (*type* - *charstr*) [1..1] A mandataroy alphanumeric



value identifying an instance in the namespace, - **codespace** - (type - charstr) [0..1] An optional but recommended namespace in which the code is valid. Ideally a URL path by which, when combined with the uuid, the full path to the resource landing page is provided. - **description** - (type - charstr) [0..1] An optional but recommended natural language description of the meaning of the code value. Usually prepopulated in the metadata template.

#### Discussion

The Resource Identifier is an identifier for the dataset, not the metadata record. The Metadata Identifier provides an identifier for the metadata. A failure to distinguish between these two elements - especially as they apply to crosswalk between standards such as Dublin Core leads to a great deal of confusion and misunderstanding.

Commonly, standards like Dublin Core do not make a distinction between the metadata identifier and the resource identifier. Emerging practice, such as Google data search beta, suggest that the distinction is useful. Harvested metadata should point to a source metadata record - a "point of truth" or the resource from which the record was harvested. Using this logic, the resource identifier uri would not need be harvested by a high-level catalogue such as data.gov.au.

Common practice in GA and ABARES is for this identifier to be the same as the metadata identifier. In these cases, it can be said the authoritative metadata serves as the landing page for the data resource.

In the case where a resource may have multiple identifiers, additional instances of this element can be created. It is important that the discription element be populated in such situations to distinguish the meaning of the different identifiers.

#### Recommendations

Therefore - It is recommended that this element be populated, preferably once, but more often if there are multiple identifier sytems for the same resource. In the case of multiple identifiers, it is important that the discription element be populated in such situations to distinguish the meaning of the different identifiers. Code must be populated in all records and it is recomended that codeSpace be populated as well.

Common practice has been to populate this field that is the same as or resolves to the metadata record itself. In this case, the metadata can be said to be the landing page for the resource.



If the metadata record is for a resource that contains more than one dataset, a best practice way to document that in the metadata needs be developed. This case may better be addressed through related metadata records.

Development of URI naming conventions to describe how the reference to the resource and the reference to metadata for that resource would be useful. This would allow easy discovery of not only the data from the metadata, but solve the often more difficult problem of discovery of the metadata for a given dataset.

#### Crosswalk considerations

**Dublin core** / **CKAN** / **data.gov.au** Maps to identifier > Note BC 18-7 - may relate to issues involving confusion between metadata identifiers and resource identifiers in DC and other metadata systems.

**DCAT** Maps to dcat:identifier

RIF-CS Maps to Identifier

## Also Consider

- **onlineResource** (MD\_Distribution.transferOptions>MD\_DigitalTransferOptions.online) is used to provide online linage to the resource.
- **MetadataIdentifier** is the preferred element to be used to provide linkage to the metadata record.
- Resource Citation parent to this element

## **Examples**

#### **ABARES**

MD\_Identifier > code : 942d6f4e-17b0-41fd-a623-c2c78d107e6d MD\_Identifier > codespace : UUID MD\_Identifier > description : The UUID for this resource, its citation and its metadata



#### GA

MD\_Identifier > code: http://pid.geoscience.gov.au/dataset/ga/102441 MD\_Identifier > codespace: Geoscience Australia Persistent Identifier

# data.gov.au

URN:UUID (example 559708e5-480e-4f94-8429-c49571e82761)

#### **XML**

```
<mdb:MD_Metadata>
 <mdb:identificationInfo>
    <mri:MD_DataIdentification>
       <mri:citation>
          <cit:CI_Citation>
             <cit:identifier>
                <mcc:MD_Identifier>
                   <mcc:code>
                    <gco:CharacterString>9547e07e-6a15-403b-8b19-488778fe0cf0
                    </gco:CharacterString>
                   </mcc:code>
                   <mcc:codeSpace>
                      <gco:CharacterString>
                      http://202.49.243.69:8080/geonetwork/srv/eng/metadata/
                      </gco:CharacterString>
                   </mcc:codeSpace>
                </mcc:MD_Identifier>
             </cit:identifier>
          </cit:CI_Citation>
        </mri:citation>
    </mri:MD_DataIdentification>
```



```
</mdb:identificationInfo>
....
</mdb:MD_Metadata>
```

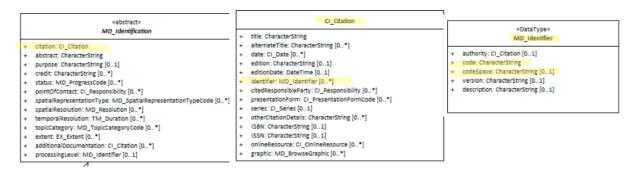



Figure 25: resourceIdentifier



## Resource Reference Date

In order to manage resource and notification systems such as giving updates to users it is useful to include in our metadata temporal information relating to resource creation, publication, revision, etc.

- **Path** MD\_Metadata.identificationInfo>MD\_DataIndentification.citation>CI\_Citation.date
- Governance Agency, Domain
- Purpose discovery, data management
- · Audience -
- machine resource □□□
- general 000
- data manager 🗆 🗆 🗅 🗅
- specialist 🗆 🗆 🗅
- Metadata type descriptive
- ICSM Level of Agreement □□□

#### **Definition**

A named and dated event associated with the cited resource (in ISO 8601 format).

# **ISO** Obligation

• There can be zero to many [0..\*] Resource reference date entries for the cited resource in the MD\_DataIdentification.citation package of class CI\_Date in a metadata record. One of these must be of dateType creation.

#### **ICSM Good Practice**

- There should be multiple entries for the Resource reference date in a metadata record. These should include:
- Creation date This is important for intellectual property and other reasons
- Publication date Is the most common date type captured by an agency
- Update date Allows notifications and resource management
- All updates to metadata should be include the date of last revision to the metadata. This can be an automated process.



#### **Recommended Sub-Elements**

Follow the general guidance for class - CI\_Date with the following additional guidance: - **dateType** - There should be an entries of value *creation*, *publication* and *lastUpdate* 

#### Discussion

There should be at least one instance of a resource reference date in a metadata record (dateType - creation), but there should be multiple - including *publication* and as many *lastUpdate* entries as needed

The CI\_DateType CodeList contains 16 values. Which values are of most import needs further discussion. The ability to crosswalk easily with CKAN and DCAT are of high concern. These external catalogues commonly have a single date field. Which dateType we map to this field is of interest in discussions regarding the recommended dateTypes used.

Relation of Metadata dateInfo to Resource reference date needs to be discussed. The Resource reference date is documented as the date that should be used for discovery of resources other than services. (For services MD\_Metadata.identificationInfo>SV\_ServiceIdentification.citation is used.)

When does the metadata dataInfo require updating? For instance, is it okay to not update the metadata dataInfo when the Resource reference date is updated if nothing else has changed? Our good practice guide should address this and related issues.

## Other discussion

**Date and DateTime:** When is it okay to use Date as opposed to DateTime?

**DCAT:** encoded using the relevant ISO 8601 Date and Time compliant string [DATE-TIME] and typed using the appropriate XML Schema datatype [XMLSCHEMA11-2]

## Recommendations

Therefore - In order to provide an idea of the age, validity and other time dependant properties of a resource, it is important to capture the important events that happened or will happen to a particular resource in the Resource Reference Date element. One of these important events must be of dateType "creation". Creation is a significant date in regards to copyright. Other important date types are "publication" and "lastUpdate".



It is recommended that Resource Date include - - date - (Mandatory) the reference Date-Time for the metadata record. - dateType - Highly recommended for Creation, when the resource was created - dateType - Highly recommended for Publication, when the resource was first published. - dateType - Highly recommended for Revision, when a revision is made.

This element should be updated in a consistent yet to be agreed upon manor. We recommend GeoNetwork's current approach. GeoNetwork updates the **revision date** for the metadata record automatically on every save. This supports systems such as notifications and harvesting regimes that rely on the capture of the date that a metadata record was last modified.

#### **Crosswalk considerations**

**Dublin core / CKAN / data.gov.au** Maps to date (publication, update)

DCAT Maps to dct:issued\* and \*dct:modified

RIF-CS Maps to Date

## Also Consider

- **Metadata Date** for sdates related to the metadata record itself and not the cited resource
- **CI\_Date** for general information about the class CI\_Date
- Resource Citation parent to this element

## **Examples**

#### **XML**

142



<cit:CI\_Citation>

```
<cit:date>
                  <cit:CI_Date>
                     <cit:date>
                        <gco:Date>2018-06-11</gco:Date>
                     </cit:date>
                     <cit:dateType>
                        <cit:CI_DateTypeCode
                        codeList="https://schemas.isotc211.org/19115/resources
                        /Codelist/cat/codelists.xml#CI_DateTypeCode"
                        codeListValue="creation"/>
                     </cit:dateType>
                  </cit:CI_Date>
               </cit:date>
               <cit:date>
                  <cit:CI_Date>
                     <cit:date>
                        <gco:Date>2019-06-11
                     </cit:date>
                     <cit:dateType>
                        <cit:CI_DateTypeCode
                        codeList="https://schemas.isotc211.org/19115/resources
                        /Codelist/cat/codelists.xml#CI_DateTypeCode"
                        codeListValue="lastUpdate"/>
                     </cit:dateType>
                  </cit:CI_Date>
               </cit:date>
            </cit:CI_Citation>
          </mri:citation>
      </mri:MD_DataIdentification>
  </mdb:identificationInfo>
</mdb:MD_Metadata>
```



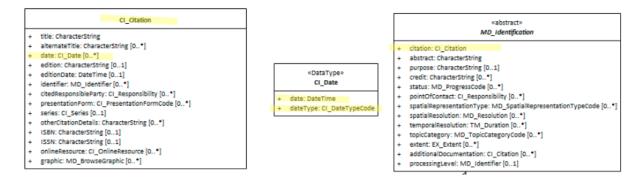



Figure 26: resourceDate



# **Resource Edition**

For resources that change over time, it is important to users and resource managers that the edition changes be tracked in the metadata. This informs the user if they have the particular edition the need for their pupose.

- **Path** MD\_Metadata.identificationInfo>MD\_DataIdentification.citation>CI\_Citation.edition
- Governance Agency, Domain
- **Purpose** Discovery, identification
- · Audience -
- machine resource □□□
- general 00000
- data manager 🗆 🗆 🗈
- specialist 🗆 🗆 🗆
- Metadata type descriptive, administrative
- ICSM Level of Agreement □□□□

#### **Definition**

# Version of the cited resource.

# **ISO** Obligation

• There can be at most one [0..1] *edition* entries for the cited resource in the *MD\_DataIdentification.citation* package in a metadata record. These are of type *character string*.

#### **ICSM Good Practice**

• When a new edition of a resource is created, a new metadata record needs to be created. This new metadata record needs the *resource edition* element populated with the edition name or identifier. When such is the case, the sibling CI\_Citation.editionDate field should also be populated.

## **Recommended Sibling Elements**



• **editionDate** - (*type* - *DateTime*)[0..1] date of the edition. Should be populated with the date of the publication of the new edition.

#### Discussion

The [0..1] cardinality of edition and editionDate means that release of a new edition of a resource requires the creation of a new metadata record. When such is the case, these two elements should be populated. The population of the edition element mandates the population of the editionDate element.

This element should be used wherever there's a usable edition/version as it is invaluable to know where this resource fits into a sequence. As "version" is often synomynous with "edition", it is advised that this field also be used for new tracked versions of resources.

#### **Issues**

**Updates vs. Editions** As discussed, new editions require a new metadata record. Updates to an existing resource do not. Do we need some guidance on when some change warrants a new edition rather than an update. Or should this be at the descretion of the agency or domain?

### Recommendations

Therefore - It is recommended that the Edition information be captured when the resource is an Edition of an existing resource.

The edition element should be populated with the edition name.

It is recommended when capturing the edition name, the editionDate also be captured.

This element should be updated in a consistent yet to be agreed upon manner within an agency.

# **Crosswalk considerations**

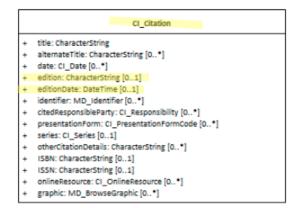
**DCAT** Maps to dct:confirmsTo

RIF-CS Maps to Version



# **Also Consider**

- Resource Date and dateType field.
- Metadata Date and dateType field.
- Resource Citation parent to this element


# **Examples**

### **XML**

```
</mdb:MD_Metadata>
   <mdb:identificationInfo>
      <mri:MD_DataIdentification>
         <mri:citation>
           <cit:CI_Citation>
           <cit:edition>
                 <gco:CharacterString>2nd new and improved edition
                 </gco:CharacterString>
              </cit:edition>
               <cit:editionDate>
                 <gco:Date>2019-06-11
              </cit:editionDate>
           </cit:CI_Citation>
         </mri:citation>
      </mri:MD_DataIdentification>
  </mdb:identificationInfo>
</mdb:MD_Metadata>
```

# **UML** diagrams





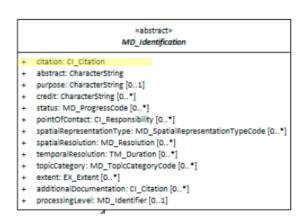



Figure 27: edition



# **Resource Series**

Very often, resources identified in a catalogue are part of a larger body of work. When this is the case it is useful to document such a relation in the metadata. The resource metadata element **series** is designed for this purpose.

- **Path** MD\_Metadata.identificationInfo>MD\_DataIdentification.citation>CI\_Citation.series
- Governance Agency, Domain
- Purpose Discovery, identification
- · Audience -
- machine resource □□□
- general 00000
- data manager 🗆 🗆 🗈
- specialist □□□
- Metadata type descriptive
- ICSM Level of Agreement □□

#### **Definition**

Information about the series, or aggregate resource, of which the resource is a part.

# **ISO** Obligation

• There may be one [0..1] *series* package for the cited resource in the *MD\_DataIdentification.citation* package of class *CI\_Series* in a metadata record.

### **ICSM Good Practice**

• This element should be populated in all metadata records where the resource is one part of a series.

**Recommended Sub Elements** From class *CI\_Series* - **name** - (*type* - *charStr*) [0..1] name of the series, or aggregate resource, of which the resource is a part - **issueIdentification** - (*type* - *charStr*) [0..1] information identifying the issue of the series - **page** - (*type* - *charStr*) [0..1] Mostly not recommended as not common. Details on which pages of the publication the article was published



### Discussion

The content of all three *CI\_Series* elements are free text and optional. How one would link back to the Series metadata is unclear. It could be captured in "Name" as a resolvable URI. Perhaps through the Parent Metadata element? What is the relation between "Series" and "Parent Metadata"

It is conceivable that there may be more than one series to which a dataset may belong. The dataset may be part of a time series while also part of a thematic series. But, by the standard, a resource may only belong to one cited series. Guidance needs to be developed for users on this topic.

#### Recommendations

**Series** has proven to be a difficult element to pin down for a number of reasons. Below is a list of issues that should be included in good practice guidance on this element:

- Definition of this element needs to be expanded to include a definition of "Series" in our context.
- Which a cardinality of zero to one, we need this well defined since it is conceivable
  that a resource may be part of multiple series depending on the definition and post
  of view.
- Good practices of how one captures links to series metadata needs development.
- The relation (if any) between series and parent metadata needs discussion.
- The use of the three CI\_Series elements are not well defined for the spatial context in which they reside. Further discussion is recommended.

Until these topics are resolved I would not recommend the inclusion of Series as recommended elements. If series information is to be captured, the minimum information needed would be CI\_Series > name.

It may be better to use other elements such as parentMetadata or associatedResource to capture series type relationships.

### Crosswalk considerations

**DCAT** Maps to prov:wasMemberOf

RIF-CS Maps to Context



# **Also Consider**

- Parent Metadata hierarchical relations of metadata records
- AssociatedResource information about aggregate data and related resources
- **Resource Citation** parent to this element

# **Examples**

### **XML**

```
<mdb:MD_Metadata>
   <mdb:identificationInfo>
      <mri:MD_DataIdentification>
         <mri:citation>
            <cit:CI_Citation>
               . . . .
               <cit:series>
                  <cit:CI_Series>
                     <cit:name>
                         <gco:CharacterString>OpenWork GeoData Series
                         </gco:CharacterString>
                     </cit:name>
                     <cit:issueIdentification gco:nilReason="missing">
                         <gco:CharacterString/>
                     </cit:issueIdentification>
                  </cit:CI_Series>
               </cit:series>
           </cit:CI_Citation>
         </mri:citation>
      </mri:MD_DataIdentification>
  </mdb:identificationInfo>
</mdb:MD_Metadata>
```



# **UML** diagrams

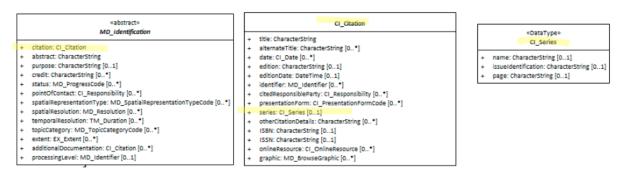



Figure 28: dataCitationSeries



# Resource Responsible Party

Contact information for the parties responsible for various aspects of a resource is useful to users and managers of the resource and improves the ability of these parties to communicate. Some of the most basic users needs of a cited resource are to know who to contact for more information for information about different aspects of the resource. In ISO 19115-1 we capture this information in MD\_identification.citation.

- Path MD\_Metadata.identificationInfo>MD\_DataIdentification.citation>CI\_Citation.citedResponsiblePart
- Governance Common ICSM, Agency, Domain
- **Purpose** discovery, identification, communication
- · Audience -
- machine resource □□
- general 00000
- data manager 🗆 🗆 🗅 🗆
- specialist □□□
- Metadata type descriptive, administrative
- ICSM Level of Agreement □□□□

#### **Definition**

Name, role, and instructions for contacting the organisation, role and/or individual responsible for the cited resource.

### **ISO** Obligation

• There may be zero or more [0..\*] *citedResponsibleParties* provided for the cited resource in the *MD\_DataIdentification.citation* package. These will be of class CI\_Responsibility.

#### **ICSM Good Practice**

• This element should be populated in all metadata records with a minimum of role, name (of organisation preferred), positionName and electronicMailAddress.

**Recommended Sub-Elements** Follow the general guidance for CI\_Responsibility. - Recommended role values should include (but not be limited to) "author" and "publisher".



### Discussion

This element captures contact information for those parties responsible for various aspects of the cited resource. It does not refer to the party responsible for the metadata record itself. General contact information for the resource should be captured in Resource Point of Contact.

There may be multiple responsible parties who hold different responsibilities. The responsibility of each party is captured in the element CI\_Responsibility > role. Entries for "author" and "publisher" are recommended.

#### Recommendations

Therefore - In order to meet ICSM good practice, in all metadata records, contact information should be given for the parties responsible for different aspects of the creation, management and maintenace of the resource. Entries for "author" and "publisher" should be provided. In addition, for minimal conformity, name (of organisation preferred), positionName and electrronicMailAddress should also be populated. The use of the new partyIdentifier element added in the 2018 ammendment to the standard is encouraged by all parties.

#### Crosswalk considerations

**ISO19139** See discussion at CI\_Responsibility

**Dublin core / CKAN / data.gov.au** Maps to publisher

**DCAT** Maps to dct:publisher

RIF-CS Maps to Publisher

# **Also Consider**

• **Resource Point of Contact** Contact information for the recommended party to contact about the resource



- **Metadata Responsible Party** Contact information for the recommended party to contact about the metadata
- **DistributionInfo** Includes Distributor contact information.
- Citation the parent package of which resouce responsible party is a part
- **Resource Citation** parent to this element

# **Examples**

### **XML**

```
<mdb:MD_Metadata>
 <mdb:identificationInfo>
    <mri:MD_DataIdentification>
       <mri:citation>
          <cit:CI_Citation>
             <cit:title>
                <gco:CharacterString>OpenWork geographical data
                </gco:CharacterString>
             </cit:title>
             <cit:date>
                <cit:CI_Date>
                   <cit:date>
                      <gco:Date>2019-07-18</gco:Date>
                   </cit:date>
                   <cit:dateType>
                      <cit:CI_DateTypeCode
                      codeList="https://schemas.isotc211.org/19115/resources
                      /Codelist/cat/codelists.xml#CI_DateTypeCode"
                      codeListValue="creation"/>
                   </cit:dateType>
                </cit:CI_Date>
             </cit:date>
             <cit:date>
                <cit:CI_Date>
                   <cit:date>
                      <gco:Date>2019-07-18</gco:Date>
```



```
</cit:date>
      <cit:dateType>
         <cit:CI_DateTypeCode
         codeList="https://schemas.isotc211.org/19115/resources
         /Codelist/cat/codelists.xml#CI_DateTypeCode"
         codeListValue="publication"/>
      </cit:dateType>
   </cit:CI_Date>
</cit:date>
<cit:edition>
   <gco:CharacterString>Version 0.1/gco:CharacterString>
</cit:edition>
<cit:editionDate>
   <gco:Date>2019-07-18</gco:Date>
</cit:editionDate>
<cit:identifier>
   <mcc:MD_Identifier>
      <mcc:code>
       <gco:CharacterString>9547e07e-6a15-403b-8b19-488778fe0cf0
       </gco:CharacterString>
      </mcc:code>
      <mcc:codeSpace>
         <gco:CharacterString>
         http://202.49.243.69:8080/geonetwork/srv/eng/metadata/
         </gco:CharacterString>
      </mcc:codeSpace>
   </mcc:MD_Identifier>
</cit:identifier>
<cit:citedResponsibleParty>
   <cit:CI_Responsibility>
      <cit:role>
         <cit:CI_RoleCode
         codeList="https://schemas.isotc211.org/19115/resources
         /Codelist/cat/codelists.xml#CI_RoleCode"
         codeListValue="author"/>
      </cit:role>
      <cit:party>
         <cit:CI_Organisation>
```



```
<cit:name>
               <gco:CharacterString>OpenWork Ltd
               </gco:CharacterString>
            </cit:name>
            <cit:contactInfo>
               <cit:CI_Contact>
                  <cit:address>
                     <cit:CI_Address>
                        <cit:electronicMailAddress>
                           <gco:CharacterString>info@openwork.nz
                           </gco:CharacterString>
                        </cit:electronicMailAddress>
                     </cit:CI Address>
                  </cit:address>
               </cit:CI_Contact>
            </cit:contactInfo>
         </cit:CI_Organisation>
      </cit:party>
   </cit:CI_Responsibility>
</cit:citedResponsibleParty>
<cit:citedResponsibleParty>
   <cit:CI_Responsibility>
      <cit:role>
         <cit:CI RoleCode
         codeList="https://schemas.isotc211.org/19115/resources
         /Codelist/cat/codelists.xml#CI_RoleCode"
         codeListValue="publisher"/>
      </cit:role>
      <ci
      t:party>
         <cit:CI_Individual>
            <cit:name>
               <gco:CharacterString>Byron Cochrane
               </gco:CharacterString>
            </cit:name>
            <cit:contactInfo>
               <cit:CI_Contact>
                  <cit:address>
```



```
<cit:CI Address>
                                      <cit:electronicMailAddress>
                                         <gco:CharacterString>byron@openwork.nz
                                         </gco:CharacterString>
                                      </cit:electronicMailAddress>
                                   </cit:CI_Address>
                               </cit:address>
                            </cit:CI_Contact>
                         </cit:contactInfo>
                      </cit:CI_Individual>
                   </cit:party>
                </cit:CI_Responsibility>
             </cit:citedResponsibleParty>
          </cit:CI_Citation>
        </mri:citation>
   </mri:MD_DataIdentification>
 </mdb:identificationInfo>
</mdb:MD_Metadata>
```

# **UML** diagrams

```
*abstract*

*MD_Identification

+ citation: CL_Citation
+ abstract: CharacterString [0.1]
+ credit: CharacterString [0.1]
+ credit: CharacterString [0.1]
+ status: MD_ProgressCode [0.1]
+ pointOfContact: CLResponsibility [0.1]
+ spatialRepresentationType: MD_SpatialRepresentationTypeCode [0.1]
+ spatialResolution: MD_Resolution [0.1]
+ temporalResolution: TM_Duration [0.1]
+ topicCategory: MD_TopicCategoryCode [0.1]
+ extent: EX_Extent [0.1]
+ additionalDocumentation: CLCitation [0.1]
+ processingLevel: MD_Identifier [0.1]

([MD_MetadatametadataScopeMD_MetadataScoperesourceScope]='dataset' implies count (extent_geographicBlementEX_GeographicBoundingBox + extent_geographicBlementEX_GeographicBoundingBox)
| ([MD_MetadatametadataScopeMD_ScoperesourceScope] = ('dataset' or 'series') implies topicCategory is mandatory)
```

```
Figure 29: ResourceCitation
```

```
CI_Citation

+ title: CharacterString
+ alternateTitle: CharacterString [0..*]
+ date: Cl_Date [0..*]
+ edition: CharacterString [0..1]
+ editionDate: DateTime [0..1]
+ identifier: MD_Identifier [0..*]
+ citedResponsibleParty: Cl_Responsibility [0..*]
+ presentationForm: Cl_PresentationFormCode [0..*]
+ series: Cl_Series [0..1]
+ otherCitationDetails: CharacterString [0..*]
+ ISBN: CharacterString [0..1]
+ ISSN: CharacterString [0..1]
+ onlineResource: Cl_OnlineResource [0..*]
+ graphic: MD_BrowseGraphic [0..*]
```



# Keywords

Keywords are the important ideas and topics that summarise and define what your resource is about. In most search engines, these are indexed and typically normalised to resemble the base word in order to capture variations. Keywords are useful in discovering and organising resources.

- Path MD\_Metadata.identificationInfo>MD\_DataIdentification.descriptiveKeywords
- Governance Common ICSM, Agency, Domain
- Primary use Discovery, Data management
- · Audience -
- machine resource DDDDD
- general 00000
- data manager 🗆 🗆 🗅 🗅
- specialist DDDDD
- Metadata type descriptive
- ICSM Level of Agreement □□□

### **Definition** -

Words or phrases describing the resource to be indexed and searched.

### **ISO** Obligation

• There can be zero or many [0..\*] descriptive keywords for the cited resource in the *MD\_DataIdentification* package of class *MD\_Keywords* in a metadata record.

#### **ICSM Good Practice**

• There should be multiple keywords selected from a referenced thesaurus present in a metadata record for a spatial resource.

**Recommended Sub-Elements** From class MD\_Keywords \* **keyword -** (type - charStr) Mandatory, preferably chosen from a thesaurus **type -** (codelist - MD\_KeywordTypeCode) highly recommended - 15 options (substantial increase from iso19139) - discipline - keyword identifies a branch of instruction or specialized learning - place - keyword identifies a



#### location

- *stratum* keyword identifies the layer(s) of any deposited substance or levels within an ordered system *temporal* keyword identifies a time period related to the dataset *theme*
- keyword identifies a particular subject or topic
- dataCentre keyword identifies a repository or archive that manages and distributes data
- featureType keyword identifies a resource containing or about a collection of feature instances with common characteristics
- instrument keyword identifies a device used to measure or compare physical properties
- platform keyword identifies a structure upon which an instrument is mounted
- process keyword identifies a series of actions or natural occurrences
- product keyword identifies a type of product
- *project* keyword identifies an endeavour undertaken to create or modify a product or service
- service keyword identifies an activity carried out by one party for the benefit of another
- *subTopicCategory* refinement of a topic category for the purpose of geographic data classification
- taxon keyword identifies a taxonomy of the resource \* thesaurusName (class CI\_Citation) highly recommended if thesaurus is used. Must include at minimum the title of the thesaurus. \* keywordClass (class MD\_KeywordClass) recommended for enhanced ontology support. Includes the following subelements className (type charStr) [1..1] Mandatory for MD\_KeywordClass. A character string to label the keyword category in natural language conceptIdentifier (type URI) [0..1] Recommended. URI of concept in ontology specified by the ontology attribute; this concept is labeled by the className: CharacterString. ontology (class CI\_Citation) [1..1] Mandatory for MD\_KeywordClass. A reference that binds the keyword class to a formal conceptualisation of a knowledge domain for use in semantic processing. NOTE: Keywords in the associated MD\_Keywords keyword list must be within the scope of this ontology

#### Discussion

Keywords are a foundational technology for organising and discovering resources. ISO19115-1 provides powerful tools to expand on these capabilities but these tools are most often very lightly used. The use of thesauri to normalise and standardise terms helps greatly. Ontologies and registries in which the definitions of these terms may be stored and linked help ensure consistent use and understanding. In Australia several agencies have developed and implemented thesauri and mandated their use. These include: \* \*"ABS Field of Research\* - The Australian and New Zealand Standard Research



Classification (ANZSRC), 2008 defined field or fields of research relevant to the dataset. \* *ABARES Keywords* - (Need Definition) \* *AGIFT Keyword* - Australian Governments' Interactive Functions Thesaurus (AGIFT) that describes the high-level business functions carried out across Commonwealth, state and local governments in Australia. \* *GCMD Keywords* - The Global Change Master Directory (GCMD) Keywords are a hierarchical set of controlled Earth Science vocabularies that help ensure Earth science data, services, and variables are described in a consistent and comprehensive manner and allow for the precise searching of metadata and subsequent retrieval of data, services, and variables.

NOTE - When the resource described is a service, one instance of MD\_Keyword should refer to the service taxonomy defined in ISO 19119.

Ontology support with keywordClass A keywordClass role is an association of a MD\_Keywords instance with a MD\_KeywordClass used to provide user-defined categorisation of groups of keywords that extend or are orthogonal to the standardised KeywordTypeCodes and are associated with an ontology that allows additional semantic query processing. The thesaurus citation specifies a collection of instances from some ontology, but is not an ontology. It might be a list of places that include rivers, mountains, counties and cities. There might be a Laconte county, the city of Laconte, the Laconte River, and Mt. Laconte; when searching it is useful for the user to be able to restrict the search to only rivers. the addition of keywordClass provides support for this functionality.

# **Outstanding Issues**

**CORE ISSUE:** Current practice in most agencies in use of keywords is not good. Thesauri are too often not used. Comma delimited list are common in some shops where others have separate entries. Good practice guidance development and training is needed and should be a special focus area.

**Thesaurus citation:** What is important to capture beside the mandatory title element in the citation of a thesaurus?

**Tech issue needs fix - GN Thesaurus builder** References the old KeywordTypeCode list



#### Recommendations

Therefore - It is highly recommended that the metadata for spatial resources contains as many keywords as needed to provide ease of discovery and improved data management practices. Capture keywords for multiple audiences, general, domain or agency specific to aid the different users of the resource. However, excessive use of keywords that target minor aspects of a resource should be avoided. Consider providing a limit to the number of keywords used and focus on those of most importance.

It is recommended that all keywords have a topic category assigned. These must be sourced from the 15 values in the MD\_KeywordTypeCode. Helps understand the keywords in context and further categorise resources.

In addition, while free text keywords are allowed, it is recommended that well managed thesauri be used to increase consistency of how keywords are used and understood. Thesauri should be used whenever posible, and where they do not exist they should be created.

The new keywordClass package should be explored to allow the greater use of semantic principles in search and data management.

### Crosswalk considerations

**ISO19139** MD\_KeywordClass was added to allow further categorisation of keywords

**Dublin core** / **CKAN** / **data.gov.au** Mapping not yet discussed.

**DCAT** ISO 19115 can groups keywords according to type (theme, place, temporal, discipline and stratum), or according to thesaurus; this information is lost in DCAT. DCAT keywords are mapped to ISO 19115 keywords without type or thesaurus.

### Also Consider

There are several elements outside the keywords class that are in effect keywords. These include: - **Topic Category** - The main themes of the resource populated from a fixed domain of values mandated by ISO19115-1 - **Extent Geographic Description** - verbal description of place by names - **Spatial Representation Type** - holds a set of values from a domain that provides keyword values about the technical method used by the resource to spatially represent geographic information.



# **Examples**

# XML -

```
<mdb:MD_Metadata>
   <mdb:identificationInfo>
      <mri:MD_DataIdentification>
          <mri:descriptiveKeywords>
            <mri:MD_Keywords>
               <mri:keyword gco:nilReason="missing">
                  <gco:CharacterString/>
               </mri:keyword>
               <mri:type>
                  <mri:MD_KeywordTypeCode codeListValue="theme"</pre>
                  codeList="https://schemas.isotc211.org/19115/resources
                  /Codelist/cat/codelists.xml#MD_KeywordTypeCode"/>
               </mri:type>
            </mri:MD_Keywords>
         </mri:descriptiveKeywords>
         <mri:descriptiveKeywords>
            <mri:MD_Keywords>
               <mri:keyword>
                  <gco:CharacterString>
                  World
                  </gco:CharacterString>
               </mri:keyword>
               <mri:type>
                  <mri:MD_KeywordTypeCode codeListValue="place"</pre>
                  codeList="https://schemas.isotc211.org/19115/resources
                  /Codelist/cat/codelists.xml#MD_KeywordTypeCode"/>
               </mri:type>
            </mri:MD_Keywords>
         </mri:descriptiveKeywords>
         <mri:descriptiveKeywords>
            <mri:MD_Keywords>
               <mri:keyword>
```



```
<gco:CharacterString>Tasman Sea/gco:CharacterString>
</mri:keyword>
<mri:type>
  <mri:MD_KeywordTypeCode</pre>
   codeList="https://schemas.isotc211.org/19115/resources
   /Codelist/cat/codelists.xml#MD_KeywordTypeCode"
  codeListValue="place"/>
</mri:type>
<mri:thesaurusName>
  <cit:CI_Citation>
      <cit:title>
         <gco:CharacterString>
         Continents, countries, sea regions of the world.
         </gco:CharacterString>
      </cit:title>
      <cit:date>
         <cit:CI_Date>
            <cit:date>
               <gco:Date>2015-07-17</gco:Date>
            </cit:date>
            <cit:dateType>
               <cit:CI_DateTypeCode
               codeList="https://schemas.isotc211.org/19115
               /resources/Codelist/cat
               /codelists.xml#CI_DateTypeCode"
               codeListValue="publication"/>
            </cit:dateType>
         </cit:CI_Date>
      </cit:date>
      <cit:identifier>
         <mcc:MD_Identifier>
            <mcc:code>
               <gcx:Anchor
               xlink:href="http://202.49.243.69:8080/geonetwork
               /srv/eng/thesaurus.download?ref=
               external.place.regions">
               geonetwork.thesaurus.external.place.regions
               </gcx:Anchor>
```



# **UML** diagrams



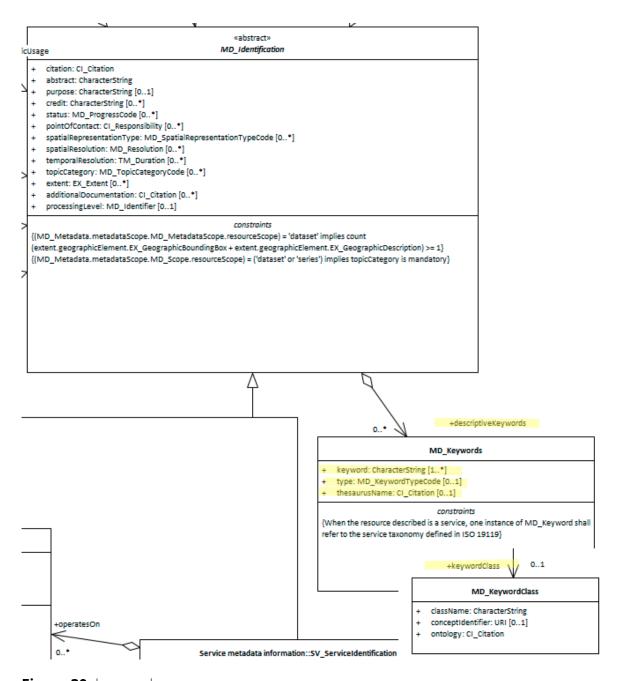



Figure 30: keywords



# Resource Maintenance

A great deal of geospatial data and service exist as living changing resources. It is often the timeliness that these cycles provide that make these resources so valuable. These update and maintenance schedules are important to document and share so that those who wish to use such resources know how to arrange their work flows to best suit.

- **Path** MD\_Metadata.identificationInfo>MD\_DataIdentification.resourceMaintenance
- Governance Agency
- **Purpose** Resource use
- Audience -
- machine resource DDD
- general 💵
- resource manager 🗆 🗆 🗈
- specialist □□
- Metadata type administrative
- ICSM Level of Agreement □□□

### Definition

Information about the frequency of resource updates, and the scope of those updates.

### **ISO** Obligation

• There should be zero to many [0..\*] *resourceMaintenance* packages for the cited resource in the *MD\_DataIdentification* package of class *MD\_MaintenanceInformation* in a metadata record.

#### **ICSM Good Practice**

• Maintenence information about a citedresource should be documented. This should include descriptions of the update and maintenance frequency and scope.

**Recommended Sub-Elements** From class *MD\_MaintenanceInformation* - **maintenance-AndUpdateFrequency** - (codelist - *MD\_MaintenanceFrequencyCode*) [0..1] frequency with



which changes and additions are made to the resource after the initial resource is completed. - **userDefinedMaintenanceFrequency** - (class - TM\_PeriodDuration) [0..1] alternate maintenance period other than those defined. Use when MD\_MaintenanceFrequencyCode do not suit. - **maintenanceScope** - (class - MD\_Scope) [0..\*] type of resource(s) and/or extent to which the maintenance information applies. Recommended subelements include: - **level** - (codelist - MD\_ScopeCode) [1..1] Mandatory for MD\_Scope. The target resource covered - **extent** - (class - EX\_Extent) Information about the horizontal, vertical and temporal extent of the resource specified by the scope - **levelDescription** - (union - MD\_ScopeDescription) [0..\*] detailed description/listing of the items specified by the level. As a union, only one value may be selected per instance

### Discussion

In order for users of a resource to know when the next update will occur or to know how many cycles old a paticular version may be, resource owners and custodians should document in the metadata the maintenance and update frequency of a resource. If this frequency changes, this change should be reflected in the metadata. If the scope of the update is less than the whole resource, the scope limitation needs to be recorded.

### Recommendations

Therefore - custodians of a resource should capture in the metadata the frequency and scope of update and maintenance of a resource. If none are planned, then record this fact.

### Crosswalk considerations

**ISO19139** in ISO19115-1 attributes were replaced to provide a more flexible and unambiguous description of maintenance dates and scope. - MD\_MaintenanceInformation.dateOfNextUpd was replaced by MD\_MaintenanceInformation.maintenanceDate' - This role was replaced by maintenanceDate in order to enable inclusion of a CI\_DateTypeCode to describe the type of the date. Note that nextUpdate was added to that code list. - MD\_MaintenanceInformation.updateScope and MD\_MaintenanceInformation.updateScopeDescriwere replaced by MD\_MaintenanceInformation.maintenanceScope( - These two roles were combined into maintenance-Scope: MD\_Scope [0..\*] in order to allow specifying a scope that includes a spatial and temporal extent.



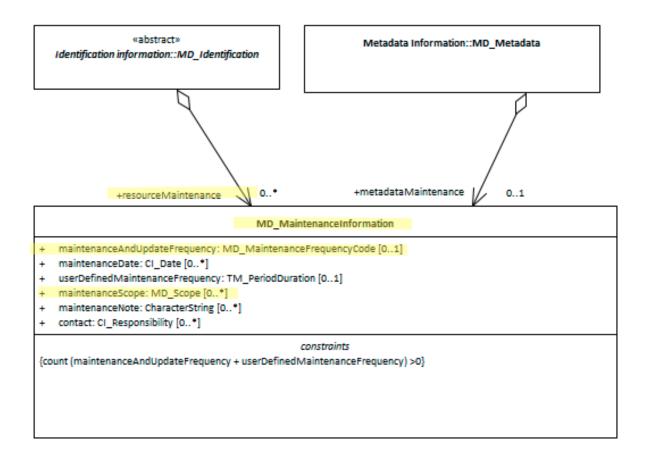
Dublin core / CKAN / data.gov.au {if any} Maps to update frequency

RIF-CS Maps to Description 'lineage'

### Also Consider

• **metadataMaintenance** - documents the update and maintenance of the metadata record and not the resource. There are many reasons the two may not be in sync. It is usually more important to document the update cycles of the resource than the metadata. (Not included in MDWG Guidance.)

# **Examples**


#### **XML**

```
<mdb:MD_Metadata>
    <mdb:identificationInfo>
      <mri:MD DataIdentification>
         <mri:resourceMaintenance>
            <mmi:MD_MaintenanceInformation>
               <mmi:maintenanceAndUpdateFrequency>
                  <mmi:MD_MaintenanceFrequencyCode</pre>
                  codeListValue="irregular"
                  codeList="https://schemas.isotc211.org/19115/resources
                  /Codelist/cat/codelists.xml#MD_MaintenanceFrequencyCode"/>
               </mmi:maintenanceAndUpdateFrequency>
               <mmi:maintenanceScope>
                  <mcc:MD_Scope>
                     <mcc:level>
                        <mcc:MD_ScopeCode
                        codeList="https://schemas.isotc211.org/19115/resources
                        /Codelist/cat/codelists.xml#MD_ScopeCode"
                        codeListValue="attribute"/>
                     </mcc:level>
                  </mcc:MD_Scope>
```



# **UML** diagrams





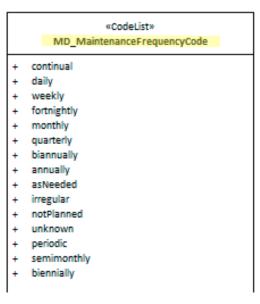



Figure 31: resourceMaintenance



# **Resource Other Constraints**

The presence (or at times absence) of constraints (other than those of legal of security nature) on a spatial resource is important to document. Potential users need to be informed of rights, restrictions and responsibilities that apply to the use of such resources. These include use limitations\* and releasability constraint information.\*

- **Path** MD\_Metadata.identificationInfo>MD\_DataIdentification.resourceConstraints
- Governance Agency
- **Primary use** Resource use
- Audience -
- machine resource -
- general 00000
- data manager 🗆 🗆 🗈
- specialist □□
- Metadata type administrative
- ICSM Level of Agreement □□□

### **Definition** -

Rights, restrictions, and responsibilities for the access and use of this cited resource. While these may optionally be of subtypes legal (MD\_LegalConstraints) or security (MD\_SecurityConstraints) there are other types of constraints to consider that exist under the more general class MD\_Constraints including useLimitations and releasability restrictions

### **ISO** Obligation

• There should be zero to many [0..\*] resourceConstraints recorded for the cited resource in the MD\_DataIdentification package of class MD\_Constraints in a metadata record,

#### **ICSM Good Practice**

• The MDWG recommends populating resourceConstraints with useLimitation, releasability and other constraint information to sufficient level to determine the limits and restrictions on a cited resource.



#### **Recommended Sub-Elements**

- **useLimitation** (*type charstr*) [0..\*] limitation(s) affecting the fitness for use of the resource or metadata. Example, "not to be used for navigation". If legal by nature, use as parent subtype MD\_LegalConstraints. If security by nature, use as parent subtype MD\_SecurityConstraints. Otherwise, use MD\_Constraint.
- **reference** (*class Cl\_Citation*) [0..\*] citation/URL for the limitation or constraint, eg. copyright statement, license agreement, security classification system, etc.
- **title** (type charstr) [1..1] Madatory for CI\_Citation The name of the constraint.
- alternateTitle (type charstr) [0..\*] Other title the constraint may be known by, if needed
- edition (type charstr) [0..1] the version of the constraint, if needed
- **citedResponsibleParty** (class -Cl\_Responsibility) [0..\*] the party responsible for governance of the constraint standard referenced
- **releasability** (class MD\_Releasability) [0..\*] information concerning the parties to whom the resource can or cannot be released
- addressee (type Cl\_Responsibility) [0..\*] party to which the release statement applies
- **statement** (type charstr) [0..\*] release statement
- **disseminationConstraints** (codelist MD\_RestrictionCode) [0..\*] component in determining releasability. A Limitation placed upon the access or use of the data
- **responsibleParty** (*class CI\_Responsibility*) [0..\*] contact information for those responsible for managing the security of the cited resource.

## Discussion

Almost all spatial resources carry some rights, restrictions and responsibility regarding their access and use. These may be legal, security or other. It is important that these be recorded and shared with existing and potential users. Each agency needs to develop consistant guidance on the use of such statements and share clear understanding of their meaning. This is often done by reference to a external body that manages the definitions of the constraints applied.

#### Recommendations

Therefore - In order for users to understand the administrative constraints applied to a cited resource, the details of these constraints, together with sufficient information and linkages to provide access to further information as to the deeper meaning and implications of such constraints, needs to be capture in the metadata about the resource.



### **Crosswalk considerations**

**ISO19139** See guidance provided in *MD\_Constraints* 

RIF-CS Maps to the agregate Rights/@accessRights

### Also Consider

- **Resource Security Constraints** contains security restrictions that apply to the resource cited by the metadata
- **Resource Legal Constraints** A sibling to resource security constraints. Contains information regarding any legal restriction on the use or access of the resource.

# **Examples**

#### **XML**

```
<mdb:MD_Metadata>
  <mdb:identificationInfo>
    <mri:MD_DataIdentification>
       <mri:resourceConstraints>
            <mco:MD_Constraints>
               <mco:useLimitation>
                  <gco:CharacterString>Not to be used for measurement/gco:CharacterString>
               </mco:useLimitation>
               <mco:reference>
                  <cit:CI_Citation>
                     <cit:title>
                        <gco:CharacterString>My own list of constraints
                        </gco:CharacterString>
                     </cit:title>
                  </cit:CI Citation>
               </mco:reference>
               <mco:releasability>
```

<mco:MD\_Releasability>



```
<mco:addressee>
         <cit:CI_Responsibility>
            <cit:role>
               <cit:CI_RoleCode
               codeList="https://schemas.isotc211.org/19115
               /resources/Codelist/cat/codelists.xml#CI_RoleCode"
               codeListValue="resourceProvider"/>
            </cit:role>
         </cit:CI_Responsibility>
      </mco:addressee>
      <mco:statement>
         <gco:CharacterString>not useful to others
         </gco:CharacterString>
      </mco:statement>
   </mco:MD_Releasability>
</mco:releasability>
<mco:responsibleParty>
  <cit:CI_Responsibility>
      <cit:role>
         <cit:CI RoleCode
         codeList="https://schemas.isotc211.org/19115/resources
         /Codelist/cat/codelists.xml#CI_RoleCode"
         codeListValue="publisher"/>
      </cit:role>
      <cit:party>
         <cit:CI_Organisation>
            <cit:name>
               <gco:CharacterString>OpenWork Ltd
               </gco:CharacterString>
            </cit:name>
            <cit:contactInfo>
               <cit:CI_Contact>
                  <cit:address>
                     <cit:CI_Address>
                        <cit:electronicMailAddress>
                          <gco:CharacterString>info@openwork.nz
                          </gco:CharacterString>
                        </cit:electronicMailAddress>
```



# **UML** diagrams



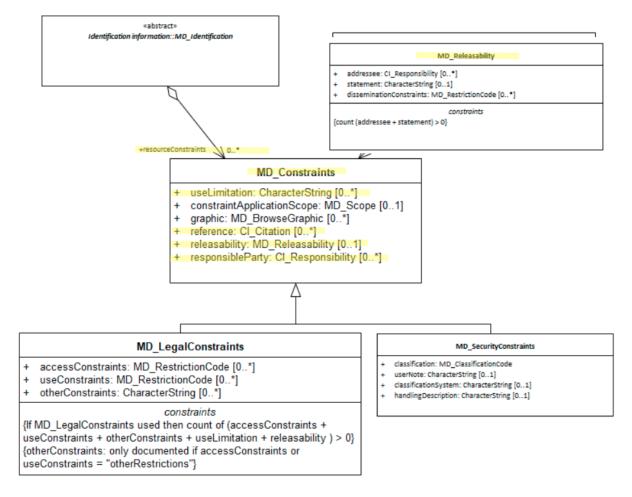



Figure 32: constraints



# **Resource Legal Constraints**

When constraints (MD\_Constraints) on a spatial resource MD\_Identification are of a legal nature it is important to document these.. Potential users need to be informed of rights, restrictions and responsibilities (or lack thereof) that apply to the use of such resources.

- Path MD\_Metadata.identificationInfo>MD\_DataIdentification.resourceConstraints>MD\_LegalConstraints
- Governance Agency
- Purpose Resource use
- · Audience -
- machine resource -
- general 00000
- data manager 🗆 🗆 🗈
- specialist □□
- Metadata type adminsitrative
- ICSM Level of Agreement □□□

### **Definition**

# Legal restrictions on the access and use of this cited resource e.g. copyright

# **ISO** Obligation

• There may be zero to many [0..\*] *legalConstraints* recorded for the cited resource in the *MD\_DataIdentification* package of class *MD\_LegalConstraints* in a metadata record,

#### **ICSM Good Practice**

The MDWG highly recommends populating this element legalConstraints to sufficient level to determine the legal rights, responsibilities and restrictions on a cited resource.

**Recommended Sub-Elements** Follow the general guidance for MD\_LegalConstraints



#### Discussion

Almost all spatial resources carry some legal rights, restrictions and responsibility regarding their access and use. For instance, in most jurisdictions, copyright is automatically granted to the creator of a creative work (which includes spatial resources). These legal restrictions such as licences and end user agreements, need be documented for users and resource managers along with the identity of the holder of these rights. Each agency needs to develop consistent guidance on the use of such statement and share clear understanding of their meaning. This is often done by reference to a external body that manages the definitions of the legal constraints applied. The legal rights, restrictions and responsibilities associated with a spatial resource are important to document and share with users, distributors, managers and other who may have some use of or responsibility over a spatial resource. A standardised way to capture such information make it more easy to understand, access and use. There is often general confusion over the restraints fields and to what they apply, be it metadata, resource, distribution, etc. This is a major topic needing clarification in MDWG. In ISO 19115-1 two types of constraints are recognised metadataConstraints (restrictions on the access and use of metadata) and resourceConstraints (information about constraints which apply to the resources). Here we are only address constraints on Metadata. (A third application of constraints in ISO 19115-1 applies to browse images.)

A few of the most common applications of legal restrictions for spatial resources include:

**Copyright** Applies to expressions of ideas. Wikipedia - Copyright is a form of intellectual property that grants the creator of an original creative work an exclusive legal right to determine whether and under what conditions this original work may be copied and used by others The most important thing to capture about copyright is "who holds the copyright" and the year it was granted to determine when it expires. The identity of the Author is also useful as copyright temporal applicability is determined by the author's life plus a certain number of years. Copyrights are property that can be traded and sold. Copyrights accrue to the the creator and apply to the intellectual resource created. Mechanisms for sharing copyrighted material include licenses and contracts.

**Copyright License** Creative Commons is a copyright license. Licenses most appropriately apply to distributions. Different distributions of a resource may be made under different license arrangements.



**End User License Agreement** Not a true license in itself, but a contractual agreement between the Copyright holder and other parties. It grants to these other parties rights responsibilities and restrictions on the use of a copyrighted resources

#### Recommendations

Therefore - It is important to capture all legal constraints that apply to a spatial resource. This should include licences, end user agreements, etc. If the resource is public domain, this should be cited appropriately. Many jurisdictions encourage the use of open data and Creative Commons license. This should be encouraged through the use of copyright licenses such as CCO or CC By. Provide the user links to additional information about such constraints, there use and meaning. In addition, it is important to document the holder of such rights and how to contact for more information.

#### Crosswalk considerations

**ISO19139** See guidance provided in MD\_Constraints and MD\_LegalConstraints

 ${f Dublin}$  core /  ${f CKAN}$  /  ${f data.gov.au}$  Maps to rights Reference for legal maps to licence

**DCAT** Maps to dct.rights as does metadata legal constraints > Note BC 22-7: Does DCAT make a distinction? Reference for legal maps to dct.license

RIF-CS Maps to Rights/@licence

### Also Consider

- **Resource Security Constraints** contains security restrictions that apply to the resource cited by the metadata
- **Metadata Legal Constraints** A sibling to metadata legal constraints. Contains information regarding any security restriction on the metadata.



# **Examples**

### **XML**

```
<mdb:MD_Metadata>
 <mdb:identificationInfo>
    <mri:MD_DataIdentification>
       <mri:resourceConstraints>
          <mco:MD_LegalConstraints>
             <mco:responsibleParty>
                <cit:CI_Responsibility>
                   <cit:role>
                      <cit:CI_RoleCode
                      codeList="https://schemas.isotc211.org/19115/resources
                      /Codelist/cat/codelists.xml#CI_RoleCode"
                      codeListValue="author"/>
                   </cit:role>
                   <cit:party>
                      <cit:CI_Organisation>
                         <cit:name>
                            <gco:CharacterString>OpenWork Ltd
                            </gco:CharacterString>
                         </cit:name>
                         <cit:contactInfo>
                            <cit:CI_Contact>
                               <cit:address>
                                   <cit:CI_Address>
                                      <cit:electronicMailAddress>
                                         <gco:CharacterString>info@openwork.nz
                                         </gco:CharacterString>
                                      </cit:electronicMailAddress>
                                   </cit:CI_Address>
                               </cit:address>
                            </cit:CI_Contact>
                         </cit:contactInfo>
                         <cit:individual>
```



```
<cit:CI_Individual>
                        <cit:name>
                           <gco:CharacterString>Byron Cochrane
                           </gco:CharacterString>
                        </cit:name>
                     </cit:CI_Individual>
                  </cit:individual>
               </cit:CI_Organisation>
            </cit:party>
         </cit:CI_Responsibility>
      </mco:responsibleParty>
      <mco:accessConstraints>
         <mco:MD_RestrictionCode codeListValue="copyright"</pre>
         codeList="https://schemas.isotc211.org/19115/resources/Codelist
         /cat/codelists.xml#MD_RestrictionCode"/>
      </mco:accessConstraints>
      <mco:useConstraints>
         <mco:MD_RestrictionCode codeListValue="otherRestrictions"</pre>
         codeList="https://schemas.isotc211.org/19115/resources/Codelist
         /cat/codelists.xml#MD_RestrictionCode"/>
      </mco:useConstraints>
      <mco:otherConstraints gco:nilReason="missing">
         <gco:CharacterString/>
      </mco:otherConstraints>
   </mco:MD_LegalConstraints>
</mri:resourceConstraints>
<mri:resourceConstraints>
   <mco:MD_SecurityConstraints>
      <mco:classification>
         <mco:MD_ClassificationCode
         codeList="https://schemas.isotc211.org/19115/resources/Codelist
         /cat/codelists.xml#MD_ClassificationCode"
         codeListValue="unclassified"/>
      </mco:classification>
   </mco:MD_SecurityConstraints>
</mri:resourceConstraints>
<mri:resourceConstraints>
   <mco:MD_Constraints>
```





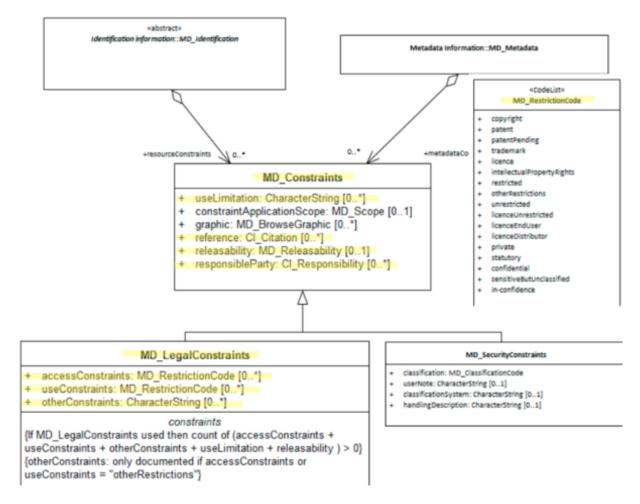



Figure 33: resourceLegalConstraints



# **Resource Security Constraints**

When constraints (MD\_Constraints) on a spatial resource [MD\_Identification] concern security it is important to document these. Potential users need to be informed of the presence or absence of concerns about security that apply to the use of such resources.

- Path MD\_Metadata.identificationInfo>MD\_DataIdentification.resourceConstraints>MD\_SecurityConstraints
- Governance National, Agency
- Purpose Resource use
- · Audience -
- machine resource -
- general 00000
- data manager 🗆 🗆 🗈
- specialist □□
- Metadata type administrative
- ICSM Level of Agreement □□□

# **Definition**

Handling restrictions imposed on this cited resource for national security or similar concerns e.g. commercial sensitivity, privacy considerations.

# **ISO** Obligation

• There should be zero to many [0..\*] security related *resourceConstraints* recorded for the cited resource in the *MD\_DataIdentification* package of class *MD\_SecurityConstraints* in a metadata record.

#### **ICSM Good Practice**

• The MDWG recommends populating resourceConstraints with security constraint information to sufficient level to determine the security structures and restrictions on a cited resource.

#### **Recommended Sub-Elements**



- **useLimitation** (*type charstr*) [0..\*] when a limitation(s) affecting the fitness for use of the resource is of a security nature.
- **classification** (codelist MD\_RestrictionCode [0..\*] name of the handling restrictions on the resource
- **userNote** (*type charstr*) 0 to 1 explanation of the application of the legal constraints or other restrictions and legal prerequisites for obtaining and using the resource or metadata. Use when needed
- **classificationSystem** (*type charstr*) 0 to 1 name of the classification system. Use when needed
- handlingDescription (type charstr) 0 to 1 additional information about the restrictions on handling the resource or metadata. Use when needed
- See guidance provided in MD\_Constraints for the following elements:
- **reference** (class Cl\_Citation) [0..\*] can be used to cite the Protective Security Policy Framework
- **releasability** (class MD\_Releasability) [0..\*] use when some parties have special considerations for use or access of the cited resource
- **responsibleParty** (class Cl\_Responsibility) [0..\*] contact information for those responsible for managing the security of the cited resource.

### Discussion

Many spatial resources carry some security restrictions regarding their access and use, such as national security, financial or commercial sensitivity, or privacy concerns as is common with census data. These security restrictions need be documented for users and resource managers along with the identity of the applier of these constraints. Each agency needs to develop consistent guidance on the use of such statement and share clear understanding of their meaning. This is often done by reference to a external body that manages the definitions of the security constraints applied.

# **Outstanding Issues**

**Australian security classification codes** The official codes used in Australia as mandated by Australian Protective Security Policy Framework, differ from those in the MD\_RestrictionCode codelist. How to address using codes other than those supplied by MD\_RestrictionCode needs to be discussed. For interoperability, should we include the MD\_RestrictionCode as well as the PSPF?



**Other security frameworks support** There will be cases where other security frameworks and classification systems need be cited, such as for New Zealand Defence. Instructions for how to include these are needed. Should such guidance be prescriptive or general?

#### Recommendations

Therefore - It is important to capture all security constraints that apply to a spatial resource. If there be none it may be useful to capture such, particularly if your organisation does regularly handle sensitive resources. Agencies should develop consistent guidance on the use of security classifications and share clear understanding of their meaning with users.

At a minimum the name (primary and alternate) and version by which this security restriction on the access and use of this cited resource is known should be captured along with the classification value selected from the codelist - MD\_RestrictionCode, or the codelist mandated by your agency, e.g. Australian Protective Security Policy Framework

#### Crosswalk considerations

**ISO19139** See guidance provided in MD\_Constraints

RIF-CS Maps to the agregate Rights/@accessRights

# Also Consider

- **Metadata Security Constraints** contains security restriction information that apply to the metadata that cites the resource.
- **Resource Legal Constraints** A sibling to resource security constraints. Contains information regarding any legal restriction on the use or access of the resource.
- **Other Constraints** other constraints that apply to the access and use of a cited resource

# **Examples**

### **XML**

<mdb:MD\_Metadata>



```
<mdb:identificationInfo>
  <mri:MD_DataIdentification>
     <mri:resourceConstraints>
          <mco:MD_LegalConstraints>
             <mco:useLimitation>
                <gco:CharacterString>Not to be used for navigation
                </gco:CharacterString>
             </mco:useLimitation>
             <mco:reference>
                <cit:CI_Citation>
                   <cit:title>
                      <gco:CharacterString>
                      "Creative Commons Attribution 4.0 International
                      Licence"
                      </gco:CharacterString>
                   </cit:title>
                   <cit:citedResponsibleParty>
                      <cit:CI_Responsibility>
                         <cit:role>
                            <cit:CI_RoleCode
                            codeList="https://schemas.isotc211.org/19115
                            /resources/Codelist/cat/codelists.xml#CI_RoleCode"
                            codeListValue="rightsHolder"/>
                         </cit:role>
                         <cit:party>
                            <cit:CI_Organisation>
                                <cit:name>
                                   <gco:CharacterString>OpenWork Ltd
                                   </gco:CharacterString>
                                </cit:name>
                                <cit:contactInfo>
                                   <cit:CI_Contact>
                                      <cit:address>
                                         <cit:CI Address>
                                            <cit:electronicMailAddress>
                                            <gco:CharacterString>
```

info@openwork.nz



```
</gco:CharacterString>
                                              </cit:electronicMailAddress>
                                           </cit:CI_Address>
                                        </cit:address>
                                    </cit:CI_Contact>
                                 </cit:contactInfo>
                              </cit:CI_Organisation>
                           </cit:party>
                        </cit:CI_Responsibility>
                     </cit:citedResponsibleParty>
                  </cit:CI_Citation>
               </mco:reference>
               <mco:accessConstraints>
                  <mco:MD_RestrictionCode
                  codeListValue="copyright"
                  codeList="https://schemas.isotc211.org/19115/resources
                  /Codelist/cat/codelists.xml#MD_RestrictionCode"/>
               </mco:accessConstraints>
               <mco:useConstraints>
                  <mco:MD_RestrictionCode
                  codeListValue="otherRestrictions"
                  codeList="https://schemas.isotc211.org/19115/resources
                  /Codelist/cat/codelists.xml#MD_RestrictionCode"/>
               </mco:useConstraints>
               <mco:otherConstraints>
                  <gco:CharacterString>For non-commercial purposes only
                  </gco:CharacterString>
               </mco:otherConstraints>
            </mco:MD_LegalConstraints>
         </mri:resourceConstraints>
     </mri:MD_DataIdentification>
</mdb:identificationInfo>
</mdb:MD_Metadata>
```



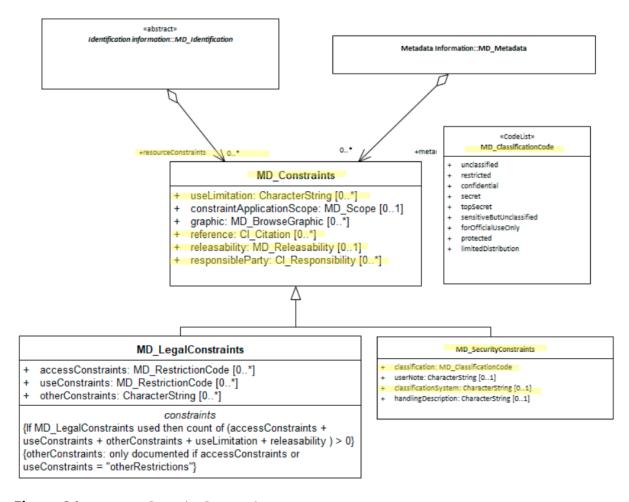



Figure 34: resourceSecurityConstraints



# **Geographic Extent**

In order to quickly determine the general location of spatial features included in an cited resource it is useful that the extent information is provided in such a way so that the geographical extent of the resource can be easily understood.

- Path MD\_Metadata.identificationInfo>MD\_DataIdentification.extent >EX\_Extent.geographicElement>EX\_
- Governance Common ICSM, Domain
- Purpose Discovery
- · Audience -
- machine resource 🗆 🗆 🗈
- general 0000
- data manager □□
- specialist DD (higher if domain specific placenames are used)
- Metadata type descriptive
- ICSM Level of Agreement □□□

# **Definition**

A description of the spatial area of the resource. These may be of the type Bounding Box, Geographic Description, or Bounding Polygon.

# **ISO** Obligation

• There can be zero to many [0..\*] *Geographical Extent* packages for the cited resource in the *Resource Extent* package. These may be of the type *Bounding Box* (EX\_GeographicBoundingBox), *Geographic Description* (EX\_GeographicDescription), or *Bounding Polygon* (EX\_BoundingPolygon).

#### **ICSM Good Practice -**

The MDWG recommends populating as many instances of Geographical Extent packages as need to give a common understanding of the spatial coverage of the cited resource.



**Recommended Sub Types EX\_GeographicExtent** is an abstrat class that is expressed by one of the three options - **Geographic Bounding Box** - (class - EX\_GeographicBoundingBox) highly recommended for resources with geographic extent. An approximate geographic position of the resource using EPSG 4326 coordinate pairs with a precision of up to two decimal places - **Geographic Description** - (class - EX\_GeographicDescription) highly recommended for resources with geographic extent. A description of the geographic area using identifiers - **Bounding Polygon** - (class EX\_BoundingPolygon) optional - not recommended by MDWG except in cases where the other options do not suit Use **extentTypeCode** (Boolean) [0..1] witha value of "0" to indicate exclusions

#### Discussion

Every metadata record describing geographic resources should contain descriptions that expalin the area of interest of the resource. These may be in the form of place names, bounding box coordinate values and lastly, bounding polygons. With these, those searching for resources can be provided a quick visual of the usable location of the resource. Catalogue software can use these descriptions to analyse and narrow searches to particular areas of interest.

The use of multiple geographic extents is recommended for more complicated geometries, including exclusion areas.

As these extents are meant to be used to give a general rough comparison to other geospatial data from sources, cordinates values should be captured in WGS 84 (EPSG 4326)

# Other discussion

**data.gov.au guidance** Free text with a mandatory requirement to use one of the following: - a point/polygon (WKT); - an administrative boundary API; or, - a reference URL (website address) from the National Gazatteer. Gazetteer reference URLs can be found by searching for a place at http://www.ga.gov.au/place-names/ then clicking through to the most appropriate location "Reference ID", and then copying and pasting the URL from the page into the Geospatial field in data.gov.au.

# Recommendations

Therefore - It is strongly recommended that to support discovery of resources, every metadata record that describes a geographic resource contains geographic descriptions of the area of interest for the resource. At a minimum one description needs be in bounding box



coordinate values. If there be any exclusion areas, the use of the boolean extentTypeCode (set to "0") is reccomended.

#### Crosswalk considerations

Dublin core / CKAN / data.gov.au Maps to jurisdiction Or geospatial coverage

**DCAT** Maps to dct.spatial

**RIF-CS** Maps to Coverage/Spatial

#### Also Consider

- **EX\_GeographicExtents** is an abstract class that can be express three ways:
- **EX\_GeographicBoundingBox** at least one of these should be present for resources that describe geographic resources
- **EX\_GeographicDescription** One of these should be present for resources that describe geographic resources
- **EX\_BoundingPolygon** While very useful, particularly in describing irregular areas, this element is not described by the MDWG as a recommended element due to the difficult that many systems have in implementing it.
- **EX\_Extent** The class that contains all extent information about the cited resource vertical, geographical or temporal.
- **EX\_TemporalExtent** Contains temporal extent information for the cited resource
- **EX\_VerticalExtent** captures the vertical range of a resource.

# **Examples**

# **UML** diagrams



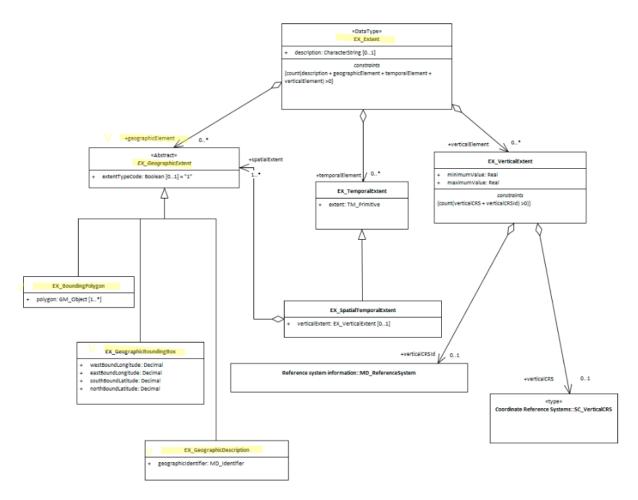



Figure 35: geographicExtent



# **Extent Geographic Description**

In order to quickly determine the general location of spatial features included in an cited resource, it is useful that the extent information contains a verbal description of the geographic extent using common (to your community) place names.

- Path MD\_Metadata.identificationInfo>MD\_DataIdentification.extent >EX\_Extent.geographicElement>EX\_
- · Governance Common, Domain
- Purpose Discovery
- · Audience -
- machine resource □□
- general 0000
- data manager □□
- specialist [] (higher if domain specific placenames are used)
- Metadata type descriptive
- ICSM Level of Agreement □□□

# **Definition**

A Geographic description which describes the location of the resource.

# **ISO** Obligation

• A metadata record may have zero to many [0..\*] *geographicIdentifier* elements for the cited resource in the *GeographicExtent* package of class *EX\_GeographicDescription* that described the geographic extent of a cited resource.

# **ICSM Good Practice**

The MDWG recommends including as many instances of Geographical Extent packages as useful to give a common understanding of the spatial coverage of the cited resource. These names may be particular to your domain.

**Recommended Sub-Elements** Use **extentTypeCode** (*type - Boolean*) [0..1] with a value of "0" to indicate exclusions class MD\_Identifier \* **code -** (*type - charStr*) mandatory for MD\_Identifier \* **codespace -** (*type - charStr*) ?a codelist that contains the code? \* **authority -** (*class - Cl\_Citation*) optional, may contain the provider of the codelist of placenames



# Discussion

In order to provide a quick guide as to the spatial area of interest for a cite resource, every metadata record describing geographic resources should contain a descriptor that indicates the location of the area of interest of the resource. Catalogue software can use this information to analyse and narrow searches to particular areas of interest.

The use of multiple descriptor is recommended for more complicated geometries, including exclusion areas.

# **Outstanding Issues**

**GeoNetwork use of EX\_Extent.description** The "description" element of EX\_Extent offers a freeform way of describing the extent of a resource. GeoNetwork uses it to provide a codelist delimited set of values by which the EX\_GeographicBoundingBox elements are populated in addition. It would seem more correct to use EX\_GeographicDescription and its MD\_Identifier element to this purpose.

#### Recommendations

Therefore - It is highly recommended that to support discovery of resources, every metadata record that describes a geographic resource contains geographic descriptions of the area of interest for the resource. This description must contain a *code* that holds the value of the geographic descriptor and should contain in the *codespace* the codelist or domain from which it was derived. The *authority* element may contain additional documentation of the codelist.

#### Crosswalk considerations

**Dublin core / CKAN / data.gov.au {if any}** Mapping geographic extents to CKAN and Dublin core elements, particularly as used by data.gov.au needs discussion

#### Also Consider

- **EX\_Extent** The class that contains all extent information about the cited resource vertical, geographical or temporal.
- EX\_GeographicExtents is an abstract class and the parent of EX\_GeographicDescription



- **EX\_GeographicBoundingBox** a sibling to this element.
- **EX\_BoundingPolygon** While very useful, particularly in describing irregular areas, this element is not described by the MDWG as a recommended element due to the difficult that many systems have in implementing it.
- **EX\_TemporalExtent** Contains temporal extent information for the cited resource
- **EX\_VerticalExtent** captures the vertical range of a resource.
- GeoNames Provides a free geographical database is available for download free
  of charge under a creative commons attribution license. It contains over 25 million
  geographical names and consists of over 11 million unique features whereof 4.8 million populated places and 13 million alternate names. All features are categorized
  into one out of nine feature classes and further subcategorized into one out of 645
  feature codes.

# **Examples**

# **XML**

```
<mdb:MD_Metadata>
    <mdb:identificationInfo>
      <mri:MD_DataIdentification>
         <mri:extent>
            <gex:EX_Extent>
               <gex:temporalElement>
                  <gex:EX_TemporalExtent>
                     <gex:extent>
                        <gml:TimePeriod gml:id="A1234">
                            <gml:beginPosition/>
                            <gml:endPosition/>
                        </gml:TimePeriod>
                     </gex:extent>
                  </gex:EX_TemporalExtent>
               </gex:temporalElement>
            </gex:EX Extent>
         </mri:extent>
         <mri:extent>
            <gex:EX_Extent>
```

<gex:geographicElement>



```
<gex:EX_GeographicBoundingBox>
                     <gex:westBoundLongitude>
                        <gco:Decimal>110.70922852</gco:Decimal>
                     </gex:westBoundLongitude>
                     <gex:eastBoundLongitude>
                        <gco:Decimal>157.79663086</gco:Decimal>
                     </gex:eastBoundLongitude>
                     <gex:southBoundLatitude>
                        <gco:Decimal>-39.32048764
                     </gex:southBoundLatitude>
                     <gex:northBoundLatitude>
                        <gco:Decimal>-10.68489957</gco:Decimal>
                     </gex:northBoundLatitude>
                  </gex:EX_GeographicBoundingBox>
               </gex:geographicElement>
               <gex:geographicElement>
                  <gex:EX_GeographicDescription>
                     <gex:geographicIdentifier>
                        <mcc:MD_Identifier>
                           <mcc:code>
                              <gco:CharacterString>
                              Australia
                              </gco:CharacterString>
                           </mcc:code>
                        </mcc:MD_Identifier>
                     </gex:geographicIdentifier>
                  </gex:EX_GeographicDescription>
               </gex:geographicElement>
            </gex:EX_Extent>
         </mri:extent>
      </mri:MD_DataIdentification>
   </mdb:identificationInfo>
</mdb:MD_Metadata>
```



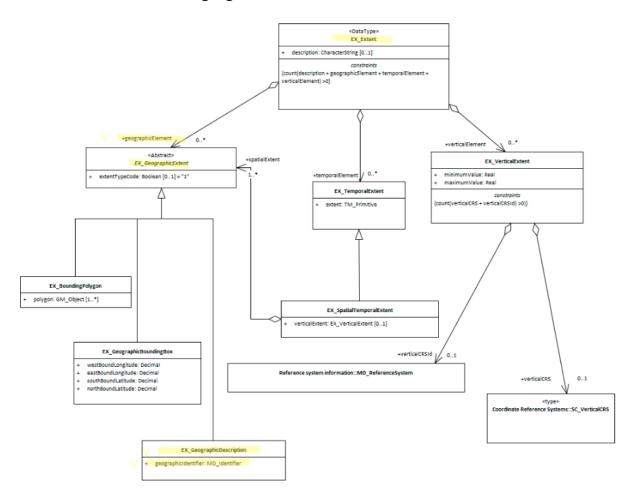



Figure 36: ExGeoDescription



# **Extent Bounding Box**

In order to quickly determine the general location of spatial features included in an cited resource it is useful that the extent information includes a minimal set of coordinate values that form a bounding box containing all the features of the resource.

- Path MD\_Metadata.identificationInfo>MD\_DataIdentification.extent>EX\_Extent.geographicElement>EX\_
- Governance Common ICSM
- Purpose Discovery
- · Audience -
- machine resource 🗆 🗆 🗈
- general 000
- data manager □□
- specialist □□
- Metadata type descriptive
- ICSM Level of Agreement □□□□

# **Definition**

A minimal set of geographic coordinates describing the geographic position of the resource. This is only an approximate reference so specifying the coordinate reference system is unnecessary and need only be provided with a precision of up to two decimal places

# **ISO** Obligation

 A metadata record may have zero to many [0..\*] geographicIdentifier elements for the cited resource in the GeographicExtent package of class EX\_GeographicBoundingBox that described the geographic extent of a cited resource.

#### **ICSM Good Practice -**

The MDWG recommends populating as many instances of Geographical Extent packages as need to give a common understanding of the spatial coverage of the cited resource.



**Recommended Sub Elements** Use **extentTypeCode** (Boolean) [0..1] with a value of "0" to indicate exclusions All four following subelements must be included in a bounding box description \* **westBoundLongitude** - (type - Decimal) western-most coordinate of the limit of the resource extent, expressed in longitude in decimal degrees (positive east - WGS 84) \* **eastBoundLongitude** - (type - Decimal) eastern-most coordinate of the limit of the resource extent, expressed in longitude in decimal degrees (positive east - WGS 84) \* **southBound-Latitude** - (type - Decimal) southern-most coordinate of the limit of the resource extent, expressed in latitude in decimal degrees (positive north - WGS 84) \* **eastBoundLongitude** - (type - Decimal) northern-most, coordinate of the limit of the resource extent expressed in latitude in decimal degrees (positive north - WGS 84)

#### Discussion

Every metadata record describing geographic resources should contain a bounding box description that covers the location which describes the area of interest of the resource. Those searching for resources can be provided a quick visual of the usable location of the resource. Catalogue software can use these boxes to do overlay analyses and narrow searches to particular areas of interest. To ensure ease of use with metadata from other sources that may contain data in any number of projections, these bounding box needs to be expresses in a common WGS 84 projection.

Because of the simple mathematics involed in calculating overlap with two coordinate pairs, bounding box descriptions provide a lightwieght way that those without GIS tools can tell if the resource overlaps with anaother.

The use of multiple bounding boxes is recommended for more complicated geometries, inclding exclusion areas.

# **Outstanding Issues**

**Projections** Geospatial data may be held and maintained by an organisation in any number of projections. Capturing the bounding box in common WGS 84 coordinates may require reprojection of coordinates. Workflows and tools need to be available to the metadata authors to simplify this task and reduce transcription errors.

**180 degree problem** To capture a bounding box that describes the area of the country of New Zealand, one must draw across 180 degree Longitude. This creates an issue with most software descriptions of bounding boxes and results in a bounding box that



circles the world and excludes New Zealand. One common solution is to split into two such bounding boxes at +/-180 degree latitude.

#### Recommendations

Therefore - It is strongly recommended that to support discovery of resources, every metadata record that describes a geographic resource contains at a minimum one bounding box description of the resource area of interest. To ensure commonality with other catalogued data, the coordinates of such need be captured in WGS 84. If there be any exclusion areas, the use of the boolean extentTypeCode (set to "0") is recommended.

#### Crosswalk considerations

Dublin core / CKAN / data.gov.au Maps to geospatial coverage

**DCAT** Maps to dct.spatial

**RIF-CS** Maps to the aggregate element Coverage/Spatial

# Also Consider

- **EX\_Extent** The class that contains all extent information about the cited resource vertical, geographical or temporal.
- EX\_GeographicExtents is an abstract class and the parent of EX\_GeographicBoundingBox
- **EX\_GeographicDescription -** a sibling to this element.
- **EX\_BoundingPolygon** While very useful, particularly in describing irregular areas, this element is not described by the MDWG as a recommended element due to the difficult that many systems have in implementing it.
- **EX\_TemporalExtent** Contains temporal extent information for the cited resource
- **EX\_VerticalExtent** captures the vertical range of a resource.

# **Examples**

### **XML**

<mdb:MD\_Metadata>



```
. . . .
     <mdb:identificationInfo>
        <mri:MD_DataIdentification>
             <gex:EX_Extent>
               <gex:geographicElement>
                  <gex:EX_GeographicBoundingBox>
                     <gex:westBoundLongitude>
                        <gco:Decimal>110.70922852</gco:Decimal>
                     </gex:westBoundLongitude>
                     <gex:eastBoundLongitude>
                        <gco:Decimal>157.79663086</gco:Decimal>
                     </gex:eastBoundLongitude>
                     <gex:southBoundLatitude>
                        <gco:Decimal>-39.32048764</gco:Decimal>
                     </gex:southBoundLatitude>
                     <gex:northBoundLatitude>
                        <gco:Decimal>-10.68489957
                     </gex:northBoundLatitude>
                  </gex:EX_GeographicBoundingBox>
               </gex:geographicElement>
             </gex:EX_Extent>
        </mri:MD_DataIdentification>
     </mdb:identificationInfo>
</mdb:MD_Metadata>
```



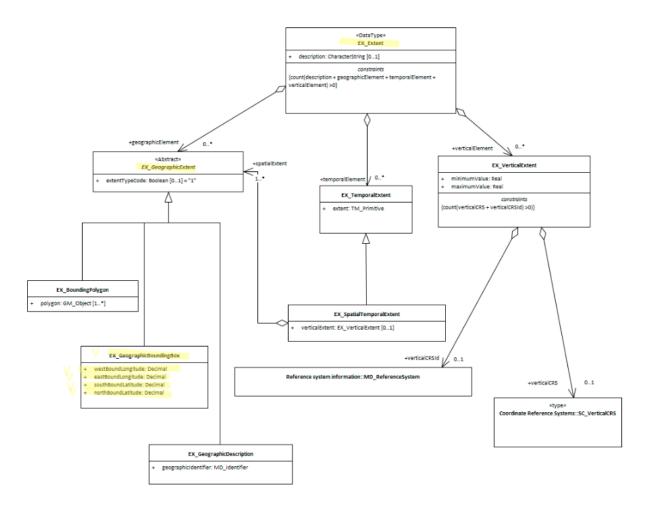



Figure 37: EXBoundBox



# **Vertical Extent**

In order to quickly determine the general location of features included in an identifed resource it is useful that the extent information include any descriptions vertical extents.

- **Path** MD\_Metadata.identificationInfo>MD\_DataIdentification.extent >EX\_Extent.verticalElement
- Governance Common ICSM, Domain
- Purpose Discovery
- · Audience -
- machine resource  $\Box\Box\Box\Box$
- general 0000
- data manager □□
- specialist [][] (higher if domain specific time periods are used)
- Metadata type descriptive
- ICSM Level of Agreement □□□

# **Definition**

# Provides vertical component of the extent of the referring object.

# **ISO** Obligation

• There can be zero to many [0..\*] *verticalElements* packages for the cited resource in the *Resource Extent* package of class *EX\_VerticalExtent* for a resource cited in a metadata record.

#### **ICSM Good Practice**

 The MDWG recommends, when the heights and depths of a resource are important to the resource, populating as many instances of Vertical Extent packages as need to give a common understanding of the depth and elevation coverage of the cited resource.

#### **Recommended Sub-Elements**

 minimumValue - (type - Real) The minimum vertical extent to which the resource is designed to be used



- **maximumValue** (type Real) The maimum vertical extent to which the resource is designed to be used
- **verticalCRSId** (*class SC\_VerticalCRS* ) Identifies the vertical coordinate reference system used for the minimum and maximum values

# Discussion

Every metadata record describing resources which contain height or depth information, should describe the limits of that extent. These extents descriptions should include units of measure and other information yso that those searching for resources can be provided a quick idea of the vertical range of the resource.

The use of multiple vertical extents is useful for describing more complicated resources.

# **Outstanding Issues**

**vertical CRS** The vertical CRS can be captured here or under the SpatialRefenceSystem package. We need to decide when to recommend capturing it here. As other extent parameter do not include the CRS, I would make a recommendation that we treat verticl the same and capture this info in the SRS section. Note BC 21-9: GN in the 19115-3 plugin captures the extent info as the old RS\_Identifier instead of MD\_Identifier

**Units of measure** These are not specified. I would suggest that we use metres realtive to sea leval WGS 84 as the universal units for vertical extents. As with mandate of WGS 84 for the projection for bounding box extents, it is important to have as a close to a universially common reference frame as we can get in order to compare disparate resources.

**Datum Issues** What is "zero" is an open question. There may be little common between domains. In 3D cadaster the level above ground may be the measure. There also is no agreement between land vertical datums and those for sea.

#### Recommendations

Therefore - It is strongly recommended that to support discovery of resources, every metadata record contains, as needed vertical extent description of the resource area of interest. Cpature the units of measure and the datum used.



### **Crosswalk considerations**

**Dublin core / CKAN / data.gov.au {if any}** Mapping to CKAN and Dublin core elements, particularly as used by data.gov.au needs discussion

**DCAT** Maps to dct.spatial

RIF-CS Maps to Coverage/Spatial

# **Also Consider**

- **EX\_Extent** The class that contains all extent information about the cited resource vertical, geographical or temporal.
- **EX\_GeographicExtents** is an abstract class that can be express three ways:
- **EX\_GeographicBoundingBox** at least one of these should be present for resources that describe geographic resources
- **EX\_GeographicDescription** One of these should be present for resources that describe geographic resources
- **EX\_BoundingPolygon** While very useful, particularly in describing irregular areas, this element is not described by the MDWG as a recommended element due to the difficult that many systems have in implementing it.
- **EX\_TemporalExtent** Contains temporal extent information for the cited resource

# **Examples**

# **XML**



```
<gex:minimumValue>
                         <gco:Real>-1000<gco:Real>
                      </gex:minimumValue>
                      <gex:maximumValue>
                         <gco:Real>1000</gco:Real>
                      </gex:maximumValue>
                      <gex:verticalCRSId>
                         <mrs:MD_ReferenceSystem>
                            <gmd:referenceSystemInfo xmlns:gmd="http://www.isotc211.org/2005/</pre>
                               <gmd:MD_ReferenceSystem>
                                   <gmd:referenceSystemIdentifier>
                                      <gmd:RS_Identifier>
                                         <gmd:code>
                                            <gco:CharacterString xmlns:gco="http://www.isotc23</pre>
                                         </gmd:code>
                                         <gmd:codeSpace>
                                            <gco:CharacterString xmlns:gco="http://www.isotc23</pre>
                                         </gmd:codeSpace>
                                         <gmd:version>
                                            <gco:CharacterString xmlns:gco="http://www.isotc23</pre>
                                         </gmd:version>
                                      </gmd:RS_Identifier>
                                   </gmd:referenceSystemIdentifier>
                               </gmd:MD_ReferenceSystem>
                            </gmd:referenceSystemInfo>
                         </mrs:MD_ReferenceSystem>
                      </gex:verticalCRSId>
                   </gex:EX_VerticalExtent>
               </gex:verticalElement>
            </gex:EX_Extent>
         </mri:extent>
      </mri:MD_DataIdentification>
   </mdb:identificationInfo>
</mdb:MD_Metadata>
```





Recommended elements highlighted in Yellow

# **Temporal Extents**

In order to quickly determine the temporal range of features included in an identifed resource it is useful that the extent information include any temporal extents and limitations.

- Path MD\_Metadata.identificationInfo>MD\_DataIdentification.extent >EX\_Extent.temporalElement>EX\_To
- Governance Common ICSM, Domain
- **Primary use** *Discovery*
- · Audience -
- machine resource  $\square\square\square\square$
- general 0000
- data manager 💵
- specialist □□□□



- Metadata type descriptive
- ICSM Level of Agreement □□□

### **Definition**

This element provides temporal component of the extent of the referring object.

# **ISO** Obligation

• There can be zero to many [0..\*] *temporalElements* packages for the cited resource in the *Resource Extent* package of class *EX\_TemporalExtent* for a cited resource. The attribute type is of class *TM\_Primitive*. Temporal Extents may be of type *Time instant*, *Time period*, *Time node*, or *Time edge*.

#### **ICSM Good Practice**

• The MDWG recommends populating as many instances of temporalExtent packages as need to give a common understanding of the temporal coverage of the cited resource.

# Recommended Temporal Extent types

- **Time instant** (class gml:TimeInstance) The instant is the 0-dimensional geometric primitive in time, equivalent to a point in space. An instant shall occupy a single temporal position in a given temporal reference system
- **timePosition** (type date or dateTime)
- **Time period -** (class gml:TimePeriod) Mandatory elements are:
- beginPosition (type date or dateTime)
- endPosition (type date or dateTime)
- duration (type- duration)
- timeInterval (type decimal)

Note BC 20-6 - What about Time node and Time edge? Need help with this timey whimey stuff.



#### Discussion

Every metadata record describing resources should describe the temporal validity of the resource.

The use of multiple temporal extents is useful for describing more complicated resources. Where these are tied to and vary by spatial dimensions in the resource these may be expressed using EX\_SpatialTemporalExtent.

With the advent of dynamic datums for high precision applications of spatial data, temporal information becomes even more important.

# **Outstanding Issues**

My understanding of temporal metadata is poor and the documentation of such is weak and by reference in ISO19115-1. There is the use of GML elements when these are described as being TM\_Primitives. What is the relation?

#### Recommendations

Therefore - It is strongly recommended that to support discovery of resources, and asure the resource is fit to purpose, every metadata record contains, as needed, temporal extent description of the resource period of interest. Dates may be captured as type *date* or *datetTime* depending on your need and tools. If your data is of high percision then capture temporal extents to support dynamic datums. the capture of *timePeriod* information is highly recommended.

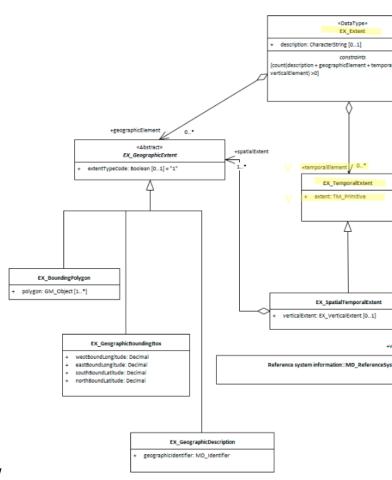
### Crosswalk considerations

**Dublin core / CKAN / data.gov.au {if any}** Mapping to CKAN and Dublin core elements, particularly as used by data.gov.au needs discussion

# Also Consider

- **EX\_Extent** The class that contains all extent information about the cited resource vertical, geographical or temporal.
- **EX\_GeographicExtents** is an abstract class that can be express three ways:




- **EX\_GeographicBoundingBox** at least one of these should be present for resources that describe geographic resources
- **EX\_GeographicDescription** One of these should be present for resources that describe geographic resources
- **EX\_BoundingPolygon** While very useful, particularly in describing irregular areas, this element is not described by the MDWG as a recommended element due to the difficult that many systems have in implementing it.
- **EX\_VerticalExtent** captures the vertical range of a resource.

# **Examples**

#### **XML**

```
<mdb:MD_Metadata>
   <mdb:identificationInfo>
     <mri:MD_DataIdentification>
        <mri:extent>
           <gex:EX_Extent>
              <gex:temporalElement>
                 <gex:EX_TemporalExtent>
                    <gex:extent>
                       <gml:TimePeriod gml:id="d5078594e414a1056030">
                          <gml:begin>
                            <gml:TimeInstant gml:id="d5078594e416a1056030">
                               <gml:timePosition>2019-07-01
                            </gml:TimeInstant>
                         </gml:begin>
                          <gml:end>
                            <gml:TimeInstant gml:id="d5078594e420a1056030">
                               <gml:timePosition>2019-07-31
                            </gml:TimeInstant>
                          </gml:end>
                       </gml:TimePeriod>
                    </gex:extent>
                 </gex:EX_TemporalExtent>
              </gex:temporalElement>
```





Recommended elements highlighted in Yellow

# Resource Lineage

Every spatial resource has a history and was built upon other work. Lineage documentation specifies a resource's source data, transformations, and input/output specifications. Such infor-



mation is inherently causal, communicating the purpose, theory and meaning embodied in a resource.

- Path MD\_Metadata.resourceLineage>LI\_Lineage
- Governance Agency, Domain
- Purpose Resource use
- · Audience -
- machine resource -
- general 💵
- resource manager 0000
- specialist DDDDD
- Metadata type descriptive
- ICSM Level of Agreement □□□

#### Definition

Information about the provenance, source(s), and/or the production process(es) applied to the resource.

# **ISO** Obligation

• A metadata record should contain zero to many [0..\*] *resourceLineage* packages for the cited resource in the *MD\_Metadata* package of class *LI\_Lineage*.

### **ICSM Good Practice**

• Lineage information should be documented and include a descriptive statement of the resource provenance and its scope as an level from a hiearchy *MD\_Scope*.

#### **Recommended Sub-Elements**

- **statement** (*type charstr*) 0 to 1 Recommended by MDWG. A general explanation of the data producer's knowledge about the lineage of a resource.
- **source** (class Ll\_Source) 0 to many information about the source resource used in creating the data specified by the scope
- description (type CharStr) 0 to 1 detailed description of the source



- **scope** (class MD\_Scope) optional 0 to many type of resource and/or extent to which the lineage information applies
- level (class MD\_ScopeCode) target resource covered
- **extent** (class EX\_Extent) Information about the horizontal, vertical and temporal extent of the resource specified by the scope
- **levelDescription** (class MD\_ScopeDescription) detailed description/listing of the items specified by the level

#### Discussion

Lineage metadata provides the user with information about the events, parameters, and source data which constructed the resource, and information about the responsible parties. It provide a good understanding of the original intent and limitations of a resource. It also allows one to reproduce the process or avoid reproducing a process where unnecesary. Lineage information can help specialist users avoid the problem of too heavily citing the same resource by not knowing their sources share common provenance. Lineage information can help custodians more intelligently manage their resources.

### **Outstanding Issues**

**CORE ISSUE:** We have had insuficient conversation in MDWG about what we want from Lineage metadata to yet make strong recommendations. The resource identified by this property presents a provenance record about its subject or anchor resource. Need to discuss futher and reach agreement as to best practice approach for caturing provenance information.

#### Recommendations

Therefore - It is strongly recommended, particularly when the resource is authoritative or likely to be used by demanding specialist, the the lineage of the resource be captured in the metadata under resourceLineage. A linage statement should be included with your metadata. If appropriate include process step information for advanced users.

# Crosswalk considerations



**ISO19139** New attributes were added to improve the description of *LI Source* and LI\_ProcessStep. - MD\_Metadata.resourceLineage (class - LI\_Lineage) - LI\_Lineage( to be included in the metadata without Data Quality information. The Data Quality model was removed in this revision to ISO 19157. - LI\_Lineage.scope (class - MD\_Scope) - This element allows the description of the type and/or extent of the lineage information. DQ\_Data-Quality/scope was moved to ISO 19157. - LI\_Lineage.additionalDocumentation (class - Cl\_Citation) -This new element cites a publication that documents the process to produce the resource. -LI\_Source.sourceSpatialResolution (class - MD\_Resolution) [0..1] - This new element replaces scaleDenominator inorder to allow more flexibility in the specification of the source spatial resolution. - **LI\_source.scope** (class - MD\_Scope) [0..1] - This new element was added in order to allow description of more details of the scope of a lineage section. This was required, in part, to replace the DQ\_Scope from the DQ\_DataQuality class that was moved from 19115 to the new data quality standard (ISO 19157). - LI\_Source.sourceMetadata (class - CI Citation) [0..\*] - This new element was added in order to allow an unambiguous reference to the metadata for the source. The sourceCitation now provides a clear reference to the source resource. - LI\_ProcessStep.stepDateTime (type - TM\_Primitive) - This new element replaces dateTime in order to provide more flexible specification of process step times. - LI\_ProcessStep.reference (class - CI\_Citation) - This new element was added in order to allow references to more detailed information about a process step. - LI\_ProcessStep.scope (class - MD\_Scope](./class-MD\_Scope))\* - This new element was added in order to allow description of the scope of a process step independently from the scope of the entire lineage section. This was required, in part, to replace the DQ\_Scope from the DQ\_DataQuality class that was moved from 19115 to the new data quality standard (ISO 19157).

**DCAT** MD\_Metadata.resourceLineage>LI\_Lineage.statement mapS to prov:has\_Provenance MD\_Metadata.resourceLineage>LI\_Lineage.source mapS to dct:source

RIF-CS Maps to Description 'lineage'

#### Also Consider

- **AssociatedResource** contains information about resources related to the creation or use of the cited resource.
- Abstract and
- **Purpose** often contain some brief lineage information



# **Examples**

# **XML**

```
<mdb:MD_Metadata>
    <mdb:resourceLineage>
        <mrl:LI_Lineage>
            <mrl:statement>
                <gco:CharacterString>this is my resource lineage
                </gco:CharacterString>
            </mrl:statement>
            <mrl:scope>
                <mcc:MD_Scope>
                    <mcc:level>
                        <mcc:MD_ScopeCode
                        codeList="https://schemas.isotc211.org/19115/resources
                        /Codelist/cat/codelists.xml#MD_ScopeCode"
                        codeListValue="dataset"/>
                    </mcc:level>
                </mcc:MD_Scope>
            </mrl:scope>
            <mrl:source>
                <mrl:LI_Source>
                    <mrl:description>
                        <gco:CharacterString>this is my source description
                        </gco:CharacterString>
                    </mrl:description>
                </mrl:LI_Source>
            </mrl:source>
        </mrl:LI_Lineage>
    </mdb:resourceLineage>
</mdb:MD_Metadata>
```

# **UML** diagrams



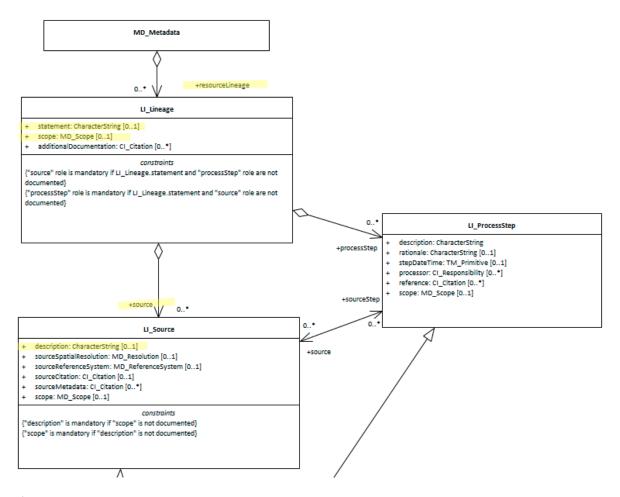



Figure 38: resourceLineage



# **Spatial Reference System**

In order to be of repeatable use and combined with other resources, geospatial information is most always captured according to a spatial reference system - (SRS). (Also referred to as a Coordinate Reference System - CRS.) Sharing the specifics of the reference systems used allows the resource to be compared and combined with others with precision and accuracy.

- **Path** *MD\_Metadata.referenceSystemInfo*
- · Governance -
- Common (for acceptable CRS registries)
- Domain (for acceptable values within a community of users)
- Primary use Usage, Fitness
- · Audience -
- machine resource DDDD
- general 💵
- data manager 🗆 🗆 🗈
- specialist DDDDD
- Metadata type Structural
- ICSM Level of Agreement □□□

# **Definition**

The information about the reference system that define the system use to describe spatial position descriptions in a resource.

# **ISO** Obligation

• There should be zero or many [0..\*] *spatialReferenceInfo* packages for the cited resource in the *MD\_Metadata* package of class *MD\_ReferenceSystem* in a metadata record for spatial resources.

# **ICSM Good Practice**

• There should be at least one instance of spatialReferenceInfo for every dataset that contains spatial information referenced to a datum.



# **Recommended Sub-Classes**

- **referenceSystemType** (codelist MD\_ReferenceSystemTypeCode) 0 to 1 to describe the type of system used.
- **referenceSystemIdentifier** (*class MD\_Identifier*) mandatory identifier, codespace and authority information for reference system
- *code* (type charStr) mandatory alphanumeric value identifying an instance in the namespace, e.g. "4283", "4326"
- *codespace* (type charStr) strongly recommended Identifier or namespace in which the code is valid, e.g. EPSG
- version (type charStr) optional use if needed to distinguish a code
- *description* (type charStr) optional Common language description of the reference system, e.g. "WGS84 World Geodetic System 1984, used in GPS", "NZTM"
- *authority* (class CI\_Citation) optional (GA, ABARES conditional?) Information about the party responsible for the spatial or temporal reference system used in this cited resource.

**Related Codelists MD\_ReferenceSystemTypeCode** There are 28 options to choose from in the reference system type code list (MD\_ReferenceSystemTypeCode). Many would never be used by a particular professional. The most common for most geospatial professionals is "projected". The list below sorts these options with the most common on top.

# Common

- projected coordinate reference system derived from a two-dimensional geodetic coordinate reference system by applying a map projection e.g. easting, northing
- temporal reference system against which time is measured e.g. time
- vertical one-dimensional coordinate reference system based on a vertical datum (datum describing the relation of gravity-related heights or depths to the Earth) e.g. [gravity-related] height or depth
- geodeticGeographic2D geodetic CRS having an ellipsoidal 2D coordinate system e.g. latitude, longitude
- geodeticGeographic3D geodetic CRS having an ellipsoidal 3D coordinate system e.g. latitude, longitude, ellipsoidal height
- Less common
  - geodeticGeocentric geodetic CRS having a Cartesian 3D coordinate system e.g. [geocentric] X,Y,Z



- geographicIdentifier spatial reference in the form of a label or code that identifies a location e.g. post code
- linear reference system that identifies a location by reference to a segment of a linear geographic feature and distance along that segment from a given point e.g. x km along road

# Specialised

- compoundGeographic2DTemporal compound spatio-temoral coordinate reference system containing a 2 dimensional geographic horizontal coordinate reference system and a temporal reference system e.g. latitude, longitude, time
- *compoundGeographic2DVertical* compound coordinate reference system in which one constituent coordinate reference system is a horizontal geodetic coordinate reference system and one is a vertical coordinate reference system e.g. latitude, longitude, [gravity-related] height or depth
- compoundGeographic2DVerticalTemporal compound spatio-temporal coordinate reference system containing a 2 dimensional geographic horizontal, a vertical, and a temporal coordinate reference system e.g. latitude, longitude, height, time
- *compoundGeographic3DTemporal* compound spatio-temporal coordinate reference system containing a 3 dimensional geographic and a temporal coordinate reference system e.g. latitude, longitude, ellipsoidal height, time
- compoundGeographic2DParametric compound statio-parametric coordinate reference system containing a 2 dimensional geographic horizontal coordinate reference system and a parametric reference system e.g. latitude, longitude, pressure
- compoundGeographic2DParametricTemporal compound statio-parametrictemporal coordinate reference system containing a 2 dimensional geographic horizontal, a parametric and a temporal coordinate reference system e.g. latitude, longitude, pressure, time
- compoundProjected2DParametric compound statio-parametric coordinate reference system containing a projected horizontal coordinate reference system and a parametric reference system e.g. easting, northing, density
- compoundProjected2DParametricTemporal compound statio-parametrictemporal coordinate reference system containing a projected horizontal, a parametric, and a temporal coordinate reference system e.g. easting, northing, density, time
- compoundProjectedTemporal compound spatio-temporal coordinate reference system containing a projected horizontal and a temporal coordinate reference



- system e.g. easting, northing, time
- *compoundProjectedVertical* compound spatial reference system containing a horizontal projected coordinate reference system and a vertical coordinate reference system e.g. easting, northing, [gravity-related] height or depth
- compoundProjectedVerticalTemporal compound spatio-temporal coordinate reference system containing a projected horizontal, a vertical, and a temporal coordinate reference system e.g. easting, northing, height, time
- engineering coordinate reference system based on an engineering datum (datum describing the relationship of a coordinate system to a local reference)e.g. [local] x,y
- *engineeringDesign* engineering coordinate reference system in which the base representation of a moving object is specified e.g. [local] x,y
- engineeringImage coordinate reference system based on an image datum (engineering datum which defines the relationship of a coordinate system to an image)e.g. row, column
- parametric coordinate reference system based on a parametric datum (datum describing the relationship of a parametric coordinate system to an object)
   e.g. pressure
- compoundEngineeringParametric compound spatio-parametric coordinate reference system containing an engineering coordinate reference system and a parametric reference system e.g. [local] x, y, pressure
- compoundEngineeringParametricTemporal compound spatio-parametrictemporal coordinate reference system containing an engineering, a parametric, and a temporal coordinate reference system e.g. [local] x, y, pressure, time
- compoundEngineeringTemporal compound spatio-temporal coordinate reference system containing an engineering and a temporal coordinate reference system e.g. [local] x, y, time
- *compoundEngineeringVertical* compound spatial reference system containing a horizontal engineering coordinate reference system and a vertical coordinate reference system e.g. [local] x, y, height
- compoundEngineeringVerticalTemporal compound spatio-temporal coordinate reference system containing an engineering, a vertical, and a temporal coordinate reference system e.g. [local] x, y, height, time



# Discussion

In order to common understand of location in geospatial resource, standardised spatial reference systems are used. A spatial reference helps describe where features are located in the real world. Different spatial reference systems are used for different purposes. (The terms spatial reference and coordinate system used interchangeably although they are slightly different.) People and machines that use spatial resources need to be provided in the metadata the details of the spatial reference systems used by the resource in order to conduct meaningful analysis and to combine this resource with others.

To adequately describe a resource, there may be the need to include multiple SRS in the metadata. Usually, each of these would be of a different type (referenceSystemType).

# **Outstanding Issues**

**Dynamic (Earth Centric) Datums** When the SRS is Earth centered as is the case with WGS 84, in order to understand position relative to object catured in the same SRS but at a different date, the *Epoch* (time of posisiton information capture) must be recorded. A best practice way of doing so is under discussion. A full resolution of this problem will most likely require changes to the ISO19115-1 standard.

**Authority** Authority has been indicated as a conditional field by ABARES and GA. But little guidance exist on the use of this element in this context. Should authority be about the owner of the registry (e.g. EPSG) or the provider of the SRS (LINZ in the case of NZTM)?

**MD\_ReferenceSystemTypeCode** This is a long and confusing list. Should we recommend a shortly one?

# Recommendations

Therefore - To ensure the usability of your spatial resource, it is important to include the Spatial Reference System used by this resource in its metadata. Doing so will allow the proper use and analysis to occur.

At a minimum the reference system type, the code and the codespace must be captured.



To date the European Petroleum Survey Group (EPSG) holds the most complete and common register of SRS. It is recommended that this source be used as codespace (and authority?) for SRS information in the metadata.

# **Crosswalk considerations**

Dublin core / CKAN / data.gov.au No mapping provided

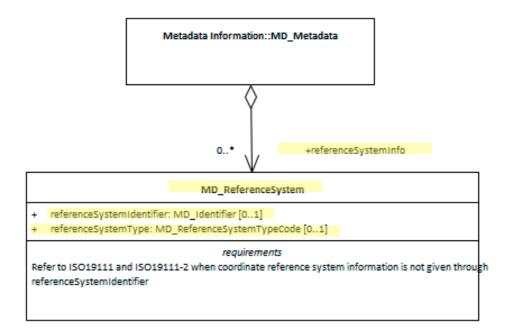
**DCAT** Maps to dct:conformsTo

RIF-CS Maps to the aggregate element Coverage/Spatial

# Also Consider

• **Spatial representation information** (class - MD\_SpatialRepresentation) Not discussed by MDWG. Contains detailed information about digital mechanisms used to represent spatial information. Particularly useful for gridded data.

# **Examples**


# **XML**



</mdb:MD\_Metadata>

# **UML** diagrams





# «CodeList» MD\_ReferenceSystemTypeCode

- + compoundEngineeringParametric
- + compoundEngineeringParametricTemporal
- + compoundEngineeringTemporal
- + compoundEngineeringVertical
- + compoundEngineeringVerticalTemporal
- + compoundGeographic2DParametric
- + compoundGeographic2DParametricTemporal
- + compoundGeographic2DTemporal
- + compoundGeographic2DVertical
- + compoundGeographic2DVerticalTemporal
- + compoundGeographic3DTemporal
- + compoundProjected2DParametric
- + compoundProjected2DParametricTemporal
- + compoundProjectedTemporal
- + compoundProjectedVertical
- + compoundProjectedVerticalTemporal
- + engineering
- + engineeringDesign
- + engineeringImage
- + geodeticGeocentric
- + geodeticGeographic2D
- + geodeticGeographic3D
- + geographic/dentifier
- + linear
- + parametric
- + projected
- + temporal
- + vertical

Figure 39: SpatRefSys



# **Distribution Info**

Commonly the most important purpose of a catalogue is to provide information by which one can access the resources described. In ISO19115-1 the distributionInfo package contains and provides this information describing both online and offline access methods, contacts, and instructions.

- Path MD\_Metadata.distributionInfo
- Governance Agency
- **Purpose** Resource access
- Audience -
- machine resource  $\Box\Box\Box$
- general 🗆 🗆 🗅
- resource manager  $\Box\Box\Box$
- specialist DDDDD
- Metadata type administrative
- ICSM Level of Agreement □□□

# Definition

# information about the distributor of and options for obtaining the resource

# ISO Obligation -

• There should be zero to many [0..\*] *distributionInfo* packages for the cited resource in the *MD\_Metadata* package of class *MD\_Distribution* in a metadata record.

# **ICSM Good Practice**

• The *distributionInfo* package should be populated in all metadata records unless it obviously has no resource to be distributed, e.g. metadata for a series where resources are accessed via the children.

### **ICSM** Recommended Sub-Elements

• **description** - (*type* - *charStr*)[0..1] (highly recommended when more than one distributionInfo package is present) a brief description of a set of distribution options



- **distributor** (class MD\_Distributor) [0..\*] Name, contact information, and role of the organisation from which this distribution of this cited resource may be obtained.
- **distributorContact** (class CI\_Responsibility) [0..\*] (Highly recommended CI\_RoleCode should be *distributor*) party from whom the resource may be obtained. This list need not be exhaustive
- **distributionOrderProcess** (class MD\_StandardOrderProcess) [0..\*] (recommended when useful) provides information about how the resource may be obtained, and related instructions and fee information
- **transferOptions** (class MD\_DigitalTransferOptions) [0..\*] technical means and media by which a resource is obtained from the distributor
- **onLine** (class CI\_OnlineResource) [0..\*] information about online sources from which the resource can be obtained. > TODO Link to CI\_OnlineResource discussion
  - linkage (type charStr) [1..1] (required for each online resource) address for on-line access using a URL/URI or similar addressing scheme
  - **protocol -** (*type charStr*)[0..1] (optional) to document the connection type used.
  - applicationProfile (type charStr)[0..1] (optional) may be useful when the application of this distribution is limited. The name of an application profile that can be used with the online resource
- **offline** (class MD\_Medium) [0..\*] information about offline media on which the resource can be obtained > TODO Link to MD\_Medium discussion
- **distributionFormat** (class MD\_Format) [0..\*] The name and version of the specification for the data format by which a distribution of this cited resource is provided
  - **formatSpecificationCitation -** *(class CI\_Citation)* [1..1] citation/URL of the specification for the format
  - title (type charStr)[1..1] name of the data format in which the resource is distributed
  - edition (type charStr)[0..1] version of the distribution format used

# Discussion

The distributionInfo package is highly flexible and provides multiple ways to capture information related to the distribution of resources descibed in a metadata record. In this entry we describe what we have determined to be best practice in the ICSM context. For instance, the format of a distribution could be captured using the path:

MD\_Distribution.distributionFormat Or MD\_Distribution.transferOptions>MD\_DigitalTransferOption we have chosen to recommend the later. This is to provide better clarity of the relation



between the cited format to the cited access (online or off). This format element describes the format of the data for a particular distribution of the resource. It does not describe the format of the resource native store or of the metadata. There may be multiple formats for a distribution.

## Recommendations

Therefore - This package should contain at least the minimum information necessary to contact the party responsible for this distribution of the resource. We have identified three primary sub-elements to recommend: - *Distributor* - *Online resource* - *Format* Of these, *distributor* is is the most most highly recommended.

When needed, instructions for online access should be provided.

It is often unclear as to what qualifies as a different distribute and what is simply a different format of the same distribution. A web feed may qualify as a different distribution than a download, but a different mime type of a download may not. Provide as many distribution options as is useful. Capture of rarely used options or those with only minor differences, unless one wants to encourage their use, is at the descretion of an agency. Do not overload a distribution entry with two many options. If a distribution gets too complex because of too many otions available, consider creating multiple distributions. It is recommended that the format details are specific for the distribution. If two different version of the same format are available they be documented as two different formats. When using a common distribution service that provides all data in a set number of formats, consider using MD\_Distribution.distributor>MD\_Distributor.distributorFormat.

# Offline distribution support

Offline access is an important option in many circumstances. For offline access to the resource we recommend the use of MD\_Distribution.transferOptions>MD\_DigitalTransferOptions.offl to capture information about the media on which the resource is stored.

The MD\_Distribution.transferOptions>MD\_DigitalTransferOptions.online with CI\_OnLineresource.function>CI\_OnLineFunctionCode value of offlineAccess is to be reserved for instructions (online) about how to access the resource from the providor offline. Another preferred apporach is to provide such instructions is via MD\_Distribution.distributor>MD\_Distributor.distributionOrderProcess.

There may also be instances where anonymous free online distribution is not desired for a cited resource. The distribution package may still be of value in providing contact informa-



tion by which one may discuss obtaining the resource from the provider. In this case we recommend that the description be populated as well as distributor information. in addition population of MD\_Distribution.distributor>MD\_Distributor.distributionOrderProcess is recommended.

#### Crosswalk considerations

#### ISO19139

- The cardinality of **MD\_Metadata.distributionInfo** was increased to [0..\*] in order to allow more flexibility in defining distribution information.
- The new element MD\_Distribution.description was added to allow a description of distribution options.
- MD\_Format.name, MD\_Format.version and MD\_Format.specification were deleted and replace with:
- MD\_Format.formatSpecificationCitation (class Cl\_Citation)
- This new element was added in order to allow more precise descriptions of formats and versions and to allow references to the full specifications of those formats.
- MD\_Format.medium
- This new element was added in order to facilitate more precise associations between formats and distribution media.
- MD\_DigitalTransferOptions.transferFrequency
- This new element was added in order to allow a distributor to specify how often new members of an on-going resource are made available.
- MD\_DigitalTransferOptions.distributionFormat
- This new element was added in order to allow unambiguous association of online resources with formats without requiring a separate MD\_Distributor or MD\_Format.
- MD\_Medium.identifier
- This new element was added to provide a unique identifier for an instance of the medium.
- MD\_StandardOrderProcess.orderOptionsType and MD\_StandardOrderProcess.orderOptions
- These two new roles were added in order to allow specification of custom ordering options associated with specific resources or implementations.

# Dublin core / CKAN / data.gov.au

• Format maps to format - The file format of the distribution. If available in IANA, use Media Type



• OnlineResource (MD\_DigitalTransferOptions.online) maps to landing page, download URL, access URL

**DCAT** Recommended property to meet data citation requirement - distributionInfo maps to dct:distribution - Format maps to dct:format - distributor maps to dct:publisher-OnlineResource (MD\_DigitalTransferOptions.online) maps to dcat:accessURI/dcat.downlog-distributionFormat - The file format, physical medium, or dimensions of the resource. A subproperty of dct:relation.

# **RIF-CS**

- Format maps to Location/Electronic/@format
- distributor maps to Related Party/relation='distributor'
- OnlineResource (MD\_DigitalTransferOptions.online) maps to Location/Electronic/@url

# Also Consider

- metadataLinkage for links that provide a download of the metadata
- resourceLineage Information about the provenance, source(s), and/or the production process(es) applied to the resource.
- **browseGraphic** associates to a large number of packages to provide linkage to associated image files, such as business or product icons and logos

# **Examples**

# **XML**



```
<mrd:MD_Distributor>
  <mrd:distributorContact>
      <cit:CI_Responsibility>
         <cit:role>
            <cit:CI RoleCode
            codeList="https://schemas.isotc211.org/19115/resources
            /Codelist/cat/codelists.xml#CI_RoleCode"
            codeListValue="distributor"/>
         </cit:role>
         <cit:party>
            <cit:CI_Organisation>
               <cit:name>
                  <gco:CharacterString>
                  OpenWork Ltd
                  </gco:CharacterString>
               </cit:name>
               <cit:contactInfo>
                  <cit:CI_Contact>
                     <cit:address>
                        <cit:CI Address>
                           <cit:electronicMailAddress>
                              <gco:CharacterString>
                              info@openwork.nz
                              </gco:CharacterString>
                           </cit:electronicMailAddress>
                        </cit:CI_Address>
                     </cit:address>
                  </cit:CI_Contact>
               </cit:contactInfo>
            </cit:CI_Organisation>
         </cit:party>
      </cit:CI_Responsibility>
  </mrd:distributorContact>
  <mrd:distributionOrderProcess>
      <mrd:MD_StandardOrderProcess>
         <mrd:fees>
            <gco:CharacterString>Free</gco:CharacterString>
         </mrd:fees>
```



```
<mrd:orderingInstructions>
               <gco:CharacterString>
               Contact us at the distributor email address
               </gco:CharacterString>
            </mrd:orderingInstructions>
         </mrd:MD_StandardOrderProcess>
      </mrd:distributionOrderProcess>
   </mrd:MD Distributor>
</mrd:distributor>
<mrd:transferOptions>
   <mrd:MD_DigitalTransferOptions>
      <mrd:onLine>
         <cit:CI_OnlineResource>
            <cit:linkage>
               <gco:CharacterString>
               https://data.openwork.nz/samplePath/toResource
               </gco:CharacterString>
            </cit:linkage>
            <cit:protocol gco:nilReason="missing">
               <gco:CharacterString/>
            </cit:protocol>
            <cit:name gco:nilReason="missing">
               <gco:CharacterString/>
            </cit:name>
            <cit:description gco:nilReason="missing">
               <gco:CharacterString/>
            </cit:description>
            <cit:function>
               <cit:CI_OnLineFunctionCode</pre>
               codeList="https://schemas.isotc211.org/19115/resources
               /Codelist/cat/codelists.xml#CI_OnLineFunctionCode"
               codeListValue=""/>
            </cit:function>
         </cit:CI OnlineResource>
      </mrd:onLine>
      <mrd:distributionFormat>
         <mrd:MD_Format>
            <mrd:formatSpecificationCitation>
```



```
<cit:CI Citation>
                  <cit:title>
                     <gco:CharacterString>
                     geopackage
                     </gco:CharacterString>
                  </cit:title>
                  <cit:edition>
                     <gco:CharacterString>1.2.0</gco:CharacterString>
                  </cit:edition>
               </cit:CI_Citation>
            </mrd:formatSpecificationCitation>
         </mrd:MD_Format>
      </mrd:distributionFormat>
   </mrd:MD_DigitalTransferOptions>
</mrd:transferOptions>
<mrd:transferOptions>
   <mrd:MD_DigitalTransferOptions>
      <mrd:onLine>
         <cit:CI_OnlineResource>
            <cit:linkage>
               <gco:CharacterString>
               https://info.openwork.nz/linkTo/offlineAccess/instructions
               </gco:CharacterString>
            </cit:linkage>
            <cit:protocol>
               <gco:CharacterString>
               WWW:DOWNLOAD-1.O-http--download
               </gco:CharacterString>
            </cit:protocol>
            <cit:name gco:nilReason="missing">
               <gco:CharacterString/>
            </cit:name>
            <cit:description gco:nilReason="missing">
               <gco:CharacterString/>
            </cit:description>
            <cit:function>
               <cit:CI_OnLineFunctionCode</pre>
               codeList="https://schemas.isotc211.org/19115/resources
```



```
/Codelist/cat/codelists.xml#CI_OnLineFunctionCode"
                      codeListValue=""/>
                   </cit:function>
                </cit:CI_OnlineResource>
             </mrd:onLine>
             <mrd:offLine>
                <mrd:MD_Medium>
                   <mrd:name>
                      <cit:CI_Citation>
                         <cit:title>
                            <gco:CharacterString>
                            BigProject data
                            </gco:CharacterString>
                         </cit:title>
                      </cit:CI_Citation>
                   </mrd:name>
                </mrd:MD_Medium>
             </mrd:offLine>
          </mrd:MD_DigitalTransferOptions>
       </mrd:transferOptions>
    </mrd:MD_Distribution>
 </mdb:distributionInfo>
</mdb:MD_Metadata>
```

# **UML** diagrams



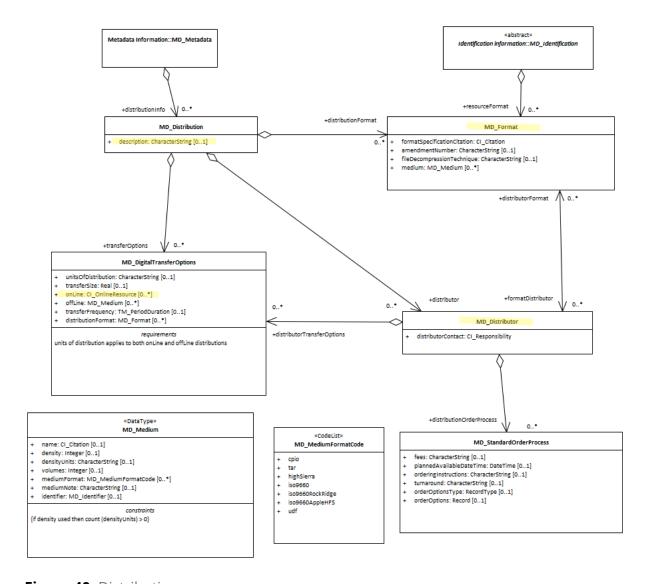



Figure 40: Distribution



# class - CI\_Citation

In order to provide a standardised way of capturing information related to the various citations described in a metadata record, a shema, by way of the CI\_Citation is provided. The provision of a consitant way of structuring this information make it easier to capture and understand.

- Governance ISO
- Metadata Type structural
- ICSM Level of Agreement □□

# **Definition**

# A standardized resource reference framework.

# ISO Associations (May be found in) -

- MD\_Metadata.parentMetadata
- MD\_Metadata.metadataStandard
- MD\_Metadata.metadataProfile
- MD\_Metadata.alternativeMetadataReference
- MD\_Identification.citation
- MD\_Identification.additionalDocumentation
- MD\_Keywords.thesaurusName
- MD\_KeywordsClass.ontology
- MD\_Usage.additionalDocumentation
- MD\_Usage.identifiedIssues
- MD\_AssociatedResource.name
- MD\_AssociatedResource.metadataReference
- MD\_Constraints.reference
- LI\_Lineage.additionalDocumentation
- LI\_ProcessStep.reference



- LI\_Source.sourceCitation
- LI\_Source.sourceMetadata
- MD Georeferenceable.parameterCitation
- MD\_FeatureCatalogueDescription.featureCatalogueCitation
- MD\_PortrayalCatalogueReference.portrayalCatalogueCitation
- MD\_Format.formatSpecificationCitation
- MD Medium.name
- MD\_ApplicationSchemaInformation.name
- SV\_ServiceIdentification.operatedDataset
- SV\_ServiceIdentification.profile
- SV\_ServiceIdentification.serviceStandard
- SV\_CoupledResource.resourceReference
- MD Identifier.authority

•

# Recomended Attributes -

- **title** (type charStr)[1..1] Mandatory name by which the cited resource is known
- alternateTitle (type charStr) [0..\*] short name or other language name by which the cited information is known. Example: DCW as an alternative title for Digital Chart of the World. Recommended whenever there are alternate names commonly in use.
- date (class Cl\_Date) [0..\*] reference date for the cited resource
- **edition** (*type charStr*) [0..1] version of the cited resource
- editionDate (type DateTime)[0..1] date of the edition
- **identifier** (class MD\_Identifier) [0..\*] value uniquely identifying an object within a namespace
- **citedResponsibleParty** (class Cl\_Responsibility)[0..\*] roles, name, contact, and position information for an individual or organisation that is responsible for the resource
- **presentationForm** (class CI\_PresentationFormCode) [0..\*] mode in which the resource is represented
- **series** (class Cl\_Series) [0..1] information about the series, or aggregate resource, of which the resource is a part
- **otherCitationDetails** (*type charStr*) [0..\*] other information required to complete the citation that is not recorded elsewhere

OpenWork Byron Cochrane 237



- ISBN (type charStr) [0..1] international Standard Book Number
- ISSN (type charStr) [0..1] international Standard Serial Number
- **onlineResource** (class Cl\_OnlineResource) [0..\*] online reference to the cited resource
- graphic (class MD\_BrowseGraphic) [0..\*] citation graphic or logo for cited party

# Discussion

Citations are used to provide information about citing the resource being described in the metadata or to refer to resources outside of the metadata record. Citations use CI\_Citation and cite the party responsible using CI\_Responsibility. CI\_Responsibility may be used without CI\_Citation. CI\_Responsibility is an aggregate of one or more parties (CI\_Party). CI\_Party may be specified as CI\_Individual and/or CI\_Organisation.

# Recommendations

Therefore - It is recommended that all citation instances follow the general guidance of ISO 19115-1 unless directed otherwise. The mandatory element title must be populated in all instances noting the type and form of the contents in this field is dependent on location in the metadata record.

Note BC 18-7 - MDWG may wish to further standardise the use of Cl\_Citation

# References

http://wiki.esipfed.org/index.php/CI\_Citation

https://geo-ide.noaa.gov/wiki/index.php?title=ISO\_Citations#CI\_Citation.2B.2B

# **UML** diagrams



# CI\_Citation + title: CharacterString + alternateTitle: CharacterString [0..\*] + date: CI\_Date [0..\*] + edition: CharacterString [0..1] + editionDate: DateTime [0..1] + identifier: MD\_Identifier [0..\*] + citedResponsibleParty: CI\_Responsibility [0..\*] + presentationForm: CI\_PresentationFormCode [0..\*] + series: CI\_Series [0..1] + otherCitationDetails: CharacterString [0..\*] + ISBN: CharacterString [0..1] + ISSN: CharacterString [0..1] + onlineResource: CI\_OnlineResource [0..\*]

+ graphic: MD\_BrowseGraphic [0..\*]

# «DataType» CI\_Date

- + date: DateTime
- + dateType: CI\_DateTypeCode

# «DataType» CI\_Series

- + name: CharacterString [0..1]
- + issueIdentification: CharacterString [0..1]
- + page: CharacterString [0..1]

# «CodeList» CI\_PresentationFormCode

- + documentDigital
- documentHardcopy
- + imageDigital
- + imageHardcopy
- + mapDigital
- + mapHardcopy
- + modelDigital
- + modelHardcopy
- + profileDigital
- + profileHardcopy
- + tableDigital
- tableHardcopy
- + videoDigital
- videoHardcopy
- + audioDigital
- + audioHardcopy
- + multimediaDigital
- + multimediaHardcopy
- + physicalObject
- + diagramDigital
  - diagramHardcopy

Figure 41: Cl\_Citation



# class - CI\_Date

To support and maintain the recording of temporal elements in the metadata it is important to provide consistency of use. The class CI\_Date provides this for all temporal elements in a ISO 19115-1 metadata record.

- Governance ISO
- Metadata type administrative
- ICSM Level of Agreement □□□

# Definition

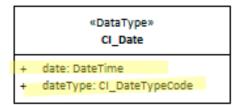
# A reference date and event used to describe it

#### ISO Associations -

- MD\_Metadata.dateInfo
- Cl Citation.date
- MD\_MaintenanceInformation.maintenanceDate
- PT\_LocaleContainer.date

ICSM Recommended Sub-Elements For class CI\_OnlineResource - date - (type - DateTime) [1..1] Madatory for CI\_OnlineResource instances. Must be in ISO 8601 format - dateType - (codelist - CI\_DateTypeCode) [1..1] Madatory for CI\_OnlineResource instances. Event used for reference date. Options include: - creation - date identifies when the resource was brought into existence - publication - date identifies when the resource was issued - revision - date identifies when the resource was examined or re-examined and improved or amended - expiry - date identifies when resource expires - lastUpdate - date identifies when resource was last reviewed - nextUpdate - date identifies when resource will be next updated - unavailable - date identifies when resource became not available or obtainable - inForce - date identifies when resource became in force - adopted - date identifies when resource was adopted - deprecated - date identifies when resource was deprecated - superseded - date identifies when resource was superseded or replaced by another resource - validityBegins - time at which the data is considered to become valid. Note: There could be quite a delay between




creation and validity begins - validityExpires - time at which the data is no longer considered to be valid - released - the date that the resource shall be released for public access - distribution - date identifies when an instance of the resource was distributed

# Recommendations

Therefore - in order to provide the consistancy needed to avoid confusion for both machines and humans, it is recommended that all dates included in a metadata record implement the class CI\_Date and follow the guidance provided by ISO and ICSM.

# **UML** diagrams

Recommended elements highlighted in Yellow





> FIX ME



# class - CI\_OnlineResource

Most metadata contains information about resources that are avaliable online. In order for machines and people to to retrieve such resources cited in a Metadata record MD\_Metadata , a method of access must be provided. Cl\_OnlineResources provides a standard way of describing such access wherever such is documented in a metadata record.

- Governance ISO
- Metadata type administrative
- ICSM Level of Agreement □□

# **Definition**

information about on-line sources from which the resource, specification, or community profile name and extended metadata elements can be obtained

# **ISO** Associations

- MD\_Metadata.metadataLinkage
- MD\_DigitalTransferOptions.online
- MD\_MetadataExtensionInformation.extensionOnLineResource
- MD\_ApplicationSchemaInformation.graphicsFile
- MD\_ApplicationSchemaInformation.softwareDevelopmentFile
- SV\_OperationMetadata.connectPoint
- CI\_Citation.onlineResource
- CI\_Contact.onlineResource
- MD\_BrowseGraphic.linkage

# ICSM Recommended Sub Element for class CI\_OnlineResource

- **linkage** (*type charStr*) [1..1] location (address) for on-line access using a Uniform Resource Locator/Uniform Resource Identifier address or similar addressing scheme
- **protocol** (type charstr) [0..1] recommended to document the connection type used.
- **function** (codelist Cl\_OnlineFunctionCode) [0..1] (optional) code for function performed by the online resource. Options are:
- downlaod online instructions for transferring data from one storage device or system to another



- information online information about the resource
- offlineAccess online instructions for requesting the resource from the provider
- order online order process for obtaining the resource
- search online search interface for seeking out information about the resource
- completeMetadata complete metadata provided
- · browseGraphic browse graphic provided
- upload online resource upload capability provide
- emailService online email service provided
- · browsing online browsing provided
- fileAccess online file access provided

# Other sub elements

- **applicationProfile** (*type charstr*) [0..1] name of an application profile that can be used with the online resource
- **name** (*type charstr*) [0..1] name of the online resource
- **description** (*type charstr*) [0..1] detailed text description of what the online resource is/does
- **protocolRequest** (*type charstr*) [0..1] protocol used by the accessed resource(to be used mainly for POST requests).

# Recommendations

It is recommended that the MDWG further develop general advise on the use of CI\_OnlineResource - particularly concerning the use of the "Other sub elements" The function element, while optional, can ususally be populated through automated means according to the parent element. §

# **UML** diagrams



# #DataType #CI\_OnlineResource Hinkage: CharacterString #protocol: CharacterString [0..1] #applicationProfile: CharacterString [0..1] #name: CharacterString [0..1] #description: CharacterString [0..1] #function: CI\_OnLineFunctionCode [0..1] #protocolRequest: CharacterString [0..1]

# CI\_OnLineFunctionCode + download + information + offlineAccess + order + search + completeMetadata + browseGraphic + upload + emailService + browsing + fileAccess

Figure 42: CI\_OnlineResource



# class - CI\_Responsibility

One of the most important benefits of metadata is to allow people to conect over common interest and needs. In order to provide a standardised way of capturing information describing people and organisations when cited in a metadata record, a shema, by way of the CI\_Responsibility is provided.

- Governance ISO
- Metadata Type structural
- ICSM Level of Agreement □□

# **Definition**

information about the party and their role.

# ISO Associations (May be found in)

- MD\_Metadata.contact
- MD\_Identification.pointOfContact
- MD\_Usage.userContactInfo
- MD\_Constraints.responsibleParty
- MD\_Releasability.addressee
- LI\_ProcessStep.processor
- MD\_MaintenanceInformation.contact
- MD\_Distributor.distributorContact
- MD\_ExtendedElementInformation.source
- CI\_Citation.citedResponsibleParty

### **Attributes**

CI\_Responsibility has at its core three elements: - **role** - (codelist - CI\_RoleCode)[1..1] Mandatory - function performed by the responsible party. Options are: - resourceProvider - party that supplies the resource - custodian - party that accepts accountability and responsibility for the resource and ensures appropriate care and maintenance of the resource - owner - party that owns the resource - user - party who uses the resource - distributor - party who distributes the resource - originator - party who created the resource - pointOfContact - party



who can be contacted for acquiring knowledge about or acquisition of the resource - principallnvestigator - key party responsible for gathering information and conducting research processor - party who has processed the data in a manner such that the resource has been modified - publisher - party who published the resource - author - party who authored the resource - sponsor - party who speaks for the resource - coAuthor - party who jointly authors the resource - collaborator - party who assists with the generation of the resource other than the principal investigator - editor - party who reviewed or modified the resource to improve the content - mediator - a class of entity that mediates access to the resource and for whom the resource is intended or useful - rightsHolder - party owning or managing rights over the resource - contributor - party contributing to the resource - funder - party providing monetary support for the resource - stakeholder - party who has an interest in the resource or the use of the resource - **extent -** (class - Extent) [0..\*] spatial or temporal extent of the role - party - (abstract class - [CI\_Party](http://wiki.esipfed.org/index.php/CI\_Party)\* [1..\*] Required - information about the individual and/or organisation of the party. Instantiated as CI\_Individual or CI\_Organisation. - name - (type - charStr) [0..1] name of the party (individual or organization) - **contactInfo -** (class - CI\_Contact) [0..\*] contact information for the party - phone - (type - CI\_Telephone) [0..\*] - address - (class - CI\_Address) [0..\*] - deliveryPoint -(type - charStr) [0..\*] address line for the location - Example: Street number and name, suite number, etc - city - (type - charStr) [0..\*] city of the location - administrativeArea -(type charStr) [0..\*] state, province of the location - **postalCode** - (type - charStr) [0..\*] ZIP or other postal code - country - (type - charStr) [0..\*] country of the physical address - electronic-MailAddress - (type - charStr) [0..\*] address of the electronic mailbox of the responsible organisation or individual

```
- **onlineResource -** *(class - [CI_OnlineResource](./class-CI_OnlineResource))* [0..\*]
- **contactInstructions -** *(type - charStr)* [0..\*] supplemental instructions on how on
- **contactType -** *(type - charStr)* [0..\*] type of contact
```

```
- **partyIdentifier -** *(class - [MD_Identifier](./class-MD_Identifier))* [0..\*] identifier
```

# Associated Classes to CI\_Party

- CI\_Individual information about the party if the party is an individual
- **positionName** (*type charStr*) [0..1] position of the individual in an organisation
- **CI\_Organisation** information about the party if the party is an organisation
- · logo -
- individual (class Cl\_Individual) see above



# Discussion

CI\_Responsibility is a complex class that provides a good deal of flexibility while maintaining structure enough to provide conformity. In the ICSM community, the minimum general guidance for CI\_Responsibility is to include the role, name (of organisation preferred), positionName and electronicMailAddress. Other requirements exists according to purpose for which it appears in the metadata.

As a codelist, CI\_RoleCode can be extended as needed. To improve consistancy, in most instances this should done under the the auspices of ICSM MDWG.

Citations use CI\_Citation and cite the party responsible using CI\_Responsibility. CI\_Responsibility may be used without CI\_Citation. CI\_Responsibility is an aggregate of one or more parties (CI\_Party). CI\_Party may be specified as CI\_Individual and/or CI\_Organisation.

The the 2018 ammendment to ISO19115-1 the partyIdentifier element was added to CI Party to allow the use of Identifiers for people and organisations such OrcID.

# Recommendations

Therefore - to remain in allignment with ICSM good practices, it is recommended that all CI\_Responsibility instances follow the general guidance of ISO 19115-1 unless directed otherwise. The mandatory element role must be populated in all instances noting the the type and form of the contents in this field is dependent on location in the metadata record. In addition, for minimal conformity, name (of organisation preferred), positionName and electronicMailAddress should also be populated. The use of the new partyIdentifier element added in the 2018 ammendment to the standard is encouraged by all parties.

Note BC 18-7 - MDWG may wish to further standardise the use of CI\_Responsibility

# Crosswalk considerations

**ISO19139** In iso19115-1 Data type Cl\_ResponsibleParty (iso19115:2004) changed to type Cl\_Responsibility. The Cl\_ResponsibleParty was restructured in order to allow more flexible associations of individuals, organisations, and roles. The Cl\_Responsibility/extent element was added in order to allow specification of the spatial and temporal extent of a role.



# **Examples**

# XML -

```
<mdb:MD_Metadata>
      <cit:CI_Responsibility>
         <cit:role>
            <cit:CI_RoleCode
            codeList="https://schemas.isotc211.org/19115/resources/Codelist
            /cat/codelists.xml#CI_RoleCode"
            codeListValue="pointOfContact"/>
         </cit:role>
         <cit:party>
            <cit:CI_Organisation>
               <cit:name>
                  <gco:CharacterString>OpenWork Ltd</gco:CharacterString>
               </cit:name>
               <cit:contactInfo>
                  <cit:CI Contact>
                     <cit:address>
                        <cit:CI_Address>
                           <cit:electronicMailAddress>
                              <gco:CharacterString>name@email.org
                              </gco:CharacterString>
                           </cit:electronicMailAddress>
                        </cit:CI_Address>
                     </cit:address>
                  </cit:CI_Contact>
               </cit:contactInfo>
               <cit:individual>
                  <cit:CI_Individual>
                     <cit:name>
                        <gco:CharacterString>Metadata Bob/gco:CharacterString>
                     </cit:name>
                     <cit:positionName gco:nilReason="missing">
                        <gco:CharacterString/>
                     </cit:positionName>
```



# **UML** diagrams

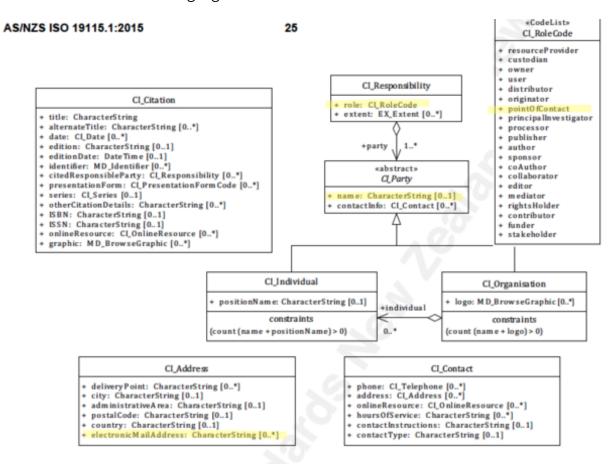



Figure 20 — Citation and responsible party information classes

Figure 43: Responsibility



# Class - MD\_BrowseGraphic

Geospatial data and service are largely visual by nature. Geospatial practicianers tend to be visually oriented. Browse graphics are a way of including in the metadata visual clues as to the nature and usefulness of resources.

- Governance ISO
- Metadata type discriptive
- ICSM Level of Agreement □□

# **Definition**

# A graphic that provides an illustration of a resource

NOTE - Should include a legend for the graphic, if applicable.

EXAMPLE - A dataset, an organisation logo, security constraint or citationgraphic...

# **ISO** Obligation

In a metadata record there should be zero to many {0..\*] graphicOverview packages of class MD\_BrowseGraphic describing a resource. These should typically include the name linkage to the graphic.

# **Recommended Sub Elements**

- **fileName** (*type CharStr*) Mandatory name of the file that contains a graphic that provides an illustration of the resource.
- **linkage** (class Cl\_OnlineResource) 0 to many link to browse graphic.
- Optional
- **imageConstraints** (class MD\_Constraints) 0 to many restriction on access and/or use of browse graphic
- **fileType** (*type CharStr*) f0 to 1 format in which the illustration is encoded (e.g.: EPS, GIF, JPEG, PBM, PS, TIFF, PDF)
- **extent** (class EX\_Extent) Information about the horizontal, vertical and temporal extent of the resource specified by the scope



# Discussion

Geospatial professionals by nature, rely to a large extent on visual information to gain understanding of resources. Browse graphics provide in the metadata a way to communicate with users visually.

# Recommendations

Therefore - in order to provide a quick way for users to discover and identify the resource they need, provide a graphic overview in the metadata. At a minimum this should include a name and link to the image.

# Crosswalk considerations

**ISO19139** browseGraphic is a new package in iso19115-1. New elements include: - **MD\_BrowseGraphic.imageConstraint** (class - MD\_Constraints) - This new element was added in order to allow the specification of constraints on a browse graphic associated with a resource. - **MD\_BrowseGraphic.linkage** (class - Cl\_OnlineResource - This new element was added in order to allow a straightforward specification of the link to the browse graphic and the capability to add additionalinformation (name, description, ...) about that graphic.

# Also Consider

• **CI\_OnLineFunctionCode** - A property of CI OnlineResource. This codelist contains an option *browseGraphic* 



# **Examples**

# **UML** diagrams

# MD\_BrowseGrap

+ fileName : CharacterString

+ fileDescription : Character

+ fileType : CharacterString |

+ imageConstraints : MD\_Co

+ linkage : CI\_OnlineResource



# class - MD\_Constraints

When constraints are palced on a spatial resource or its metadata, it is important to document these.. Potential users need to be informed of rights, restricutions and responsibilities (or lack thereof) that apply to the use of such resources.

- Governance ISO, National
- Metadata Type structural
- ICSM Level of Agreement □□

### Definition

restrictions on the access and use of a resource or metadata.

## ISO Associations (May be found in)

- MD\_Metadata.metadataConstraints
- MD\_Identification.resourceConstraints
- MD\_BrowseGraphic.imageConstraints

### Attributes -

- **useLimitation** (*type charStr*) [0..\*] limitation affecting the fitness for use of the resource or metadata. Example, "not to be used for navigation"
- **constraintApplicationScope** (*class MD\_Scope*) [0..1] the target resource and physical extent for which information is reported
- graphic (class MD\_BrowseGraphic) [0..\*] graphic /symbol indicating the constraint
- **reference** (*class Cl\_Citation*) [0..\*] citation/URL for the limitation or constraint, eg. copyright statement, license agreement, etc
- **releasability** (class MD\_Releasability) [0..1] Requires an addressee or statement information concerning the parties to whom the resource can or cannot be released
- addressee (class Cl\_Responsibility) [0..\*] party to which the release statement applies
- **statement** (type charStr)) [0..1] release statement
- **disseminationConstraints** (codelist MD\_RestrictionCode) [0..\*] component in determining releasability.
- responsibleParty (class Cl\_Responsibility) [0..\*] party responsible for the resource constraints



### Associated Classes, Codelists and Unions

MD\_Scope - class See MD\_Scope

## MD\_BrowseGraphic - class

- **fileName** (*type charStr*) Mandatory when using MD\_BrowseGraphic name of the file that contains a graphic that provides an illustration of the resource.
- **linkage** (class Cl\_OnlineResource) 0 to many link to browse graphic.
- **imageConstraints** (class MD\_Constraints) 0 to many restriction on access and/or use of browse graphic
- **fileType** (*type charStr*) f0 to 1 format in which the illustration is encoded (e.g.: EPS, GJF, JPEG, PBM, PS, TJFF, PDF)
- **extent** (class Extent) Information about the horizontal, vertical and temporal extent of the resource specified by the scope

## Generalisations of MD\_Constraints

MD\_Constraints may be expressed as: - MD\_LegalConstraints - MD\_SecurityConstraints

## Discussion

Information about constraints on the access and use of a resource or its metadata is of high importance to document as this information strongly impacts on the usability of the resource to the user. Constraints may be security (MD\_SecurityConstraints), legal (MD\_LegalConstraints) or other (MD\_Constraints).

A restriction may be applicable to a particular aspect of the resource. In this case capture this scope in *constraintApplicationScope* using a value from *MD\_Scope* 

### **Outstanding Issues**

Good Practice examples lacking There is a need to gain greater consensus as to the general use of MD\_Constraints across its instances by the MDWG.



Distribution Constraints Currently there are no clear methods to apply different constraints to different distributions. This may be an ISO issue to address. We should develop use cases.

#### Recommendations

#### Crosswalk considerations

#### ISO19139

- *MD\_BrowseGraphic.imageConstraint* This new element was added in order to allow the specification of constraints on a browse graphic associated with a resource.
- *MD\_Constraints.constraintApplicationScope* This new element was added in order to allow description of constraints on a resource that vary in space and/or time and/or level.
- *MD\_Constraints.graphic* This new element was added in order to allow inclusion of a logo or other graphic that is associated with a particular constraint.
- *MD\_Constraints.reference* This new element was added in order to allow inclusion of a reference to more detailed information about a constraint.
- *MD\_Constraints.releasability* This new element was added in order to allow specification of constraints that apply to specific people or organizations.
- *MD\_Constraints.responsibleParty* This new element was added in order to allow specification of people or organisations responsible for the constraints.
- *MD\_Releasability* This new class was added to provide information about resource release constraints

### **Related Classes**

- \*\*MD\_LegalConstraints An extension to MD\_Constraints for constraints applied for legal reasons.
- \*\*MD\_SecurityConstraints An extension to MD\_Constraints for constraints applied for security purposes.

### **UML** diagrams



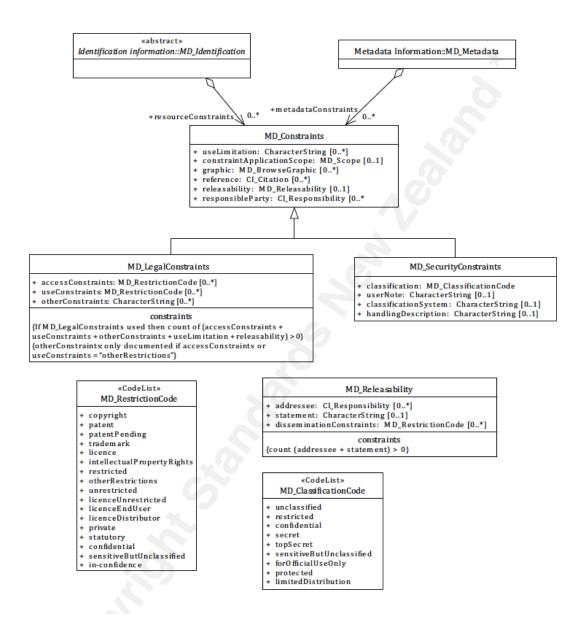



Figure 44: MD\_Constraints



# Class - MD\_DataIdentification

When capturing information on a spatial resource, it is important to identify and categorise information as pertaining to the data resource and to distinguish these information from that which applies to the metadata itself or service resources. MD\_DataIdentification extends the abstract class MD\_Identification to document a spatial data resource.

- Governance ISO
- Metadata Type structural
- ICSM Level of Agreement □□

#### **Definition** -

basic information required to uniquely identify a data resource.

#### **ISO** Associations

**MD\_Identification** is an abstract class that is parent to - **MD\_DataIdentification** It is a child of - MD\_Metadata.identificationInfo

## Atributes and packages

the following provides additional gauidance to MD\_Identification.

**MDWG** Recomended - In addition to all the attributes of MD\_Identification, the additional recommended elements apply - - **Locale -** (class - PT\_Locale) [0..1] - **Extents -** (class - EX\_Extent) [0..\*] High-level thematic classifications to assist in the grouping and searching of data. Required when the hierarchyLevelName scopeCode is "dataset".

### Additional optional attributes

- otherLocale (class PT Locale) [0..\*]
- environmentDescription (type charStr) [0..1] description of the resource in the producer's processing environment, including items such as the software, the computer operating system, file name, and the dataset size
- **supplementalInformation** (*type charStr*)[0..1] any other descriptive information about the resource



## Discussion

Identification information about a resource is of high importance to document as this information strongly impacts on the ability of a user to asses the resource fitness to use. MD\_DataIdentification instantiates the abstract class MD\_Identification for use with data resources.

### Recommendations

### **Related Classes**

- MD\_Identification the abstract parent class to MD\_DataIdentification
- See guidances for the composite elements.

# **UML** diagrams



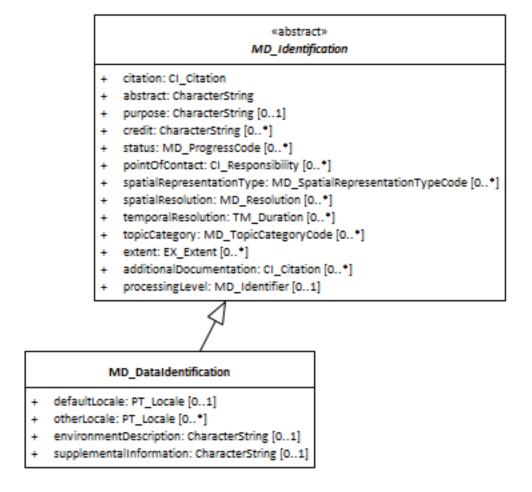



Figure 45: MD\_DataIdentification



# class - MD\_Metadata

In order to create consistent structured metadata, we need a schema to provide a structure and a class to hold it. MD\_Metadata provides this for ISO19115-1.

- Governance ISO
- Metadata Type structural
- ICSM Level of Agreement □□

#### **Definition**

## Root entity which defines metadata about a resource or resources

## Child packages

### **ICSM** recommended

- resourceLineage (class Li\_Lineage) [0..\*]
- referenceSystemInfo (class MD\_ReferenceSystem)
- metadataConstraints ( abstract class MD\_Constraints) [0..\*] see
- Metadata Security Constraints
- Metadata Legal Constraints
- **indentificationInfo** (abstract class MD\_Identification) [1..\*] see:
- Data Identification (class MD\_DataIdentification) > ?create Entry?
- **Service Identification** (class SV\_ServiceIdentification) > To Be Completed
- distributionInfo (class MD\_Distribution) [0..\*]

### Other packages - not yet addressed by MDWG

- metadataMaintenance (class MD\_MaintenanceInformation) [0..1]
- spatialRepresentationInfo (abstract class MD\_SpatialRepresentation) [0..\*]
- metadataExtensionInfo (class MD\_MetadataExtensionInformation) [0..\*]
- applicationSchemaInfo (class MD\_ApplicationSchemaInformation) [0..\*]
- portrayalCatalogInfo (class MD\_ProtrayalCatalogueReference) [0..\*]
- contentinfo (abstract class MD\_Contentinformation) [0..\*]
- dataQualityInfo (class DQ\_DataQuality (from ISO19157)) [0..\*]



#### **Atributes**

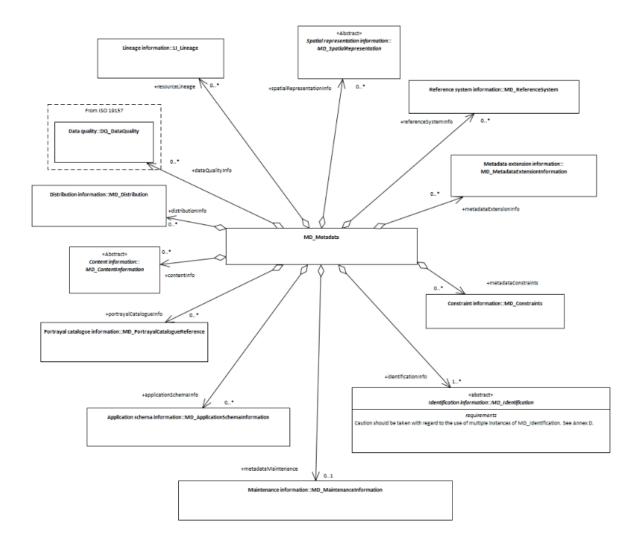
### **MDWG** Recomended Attributes -

- metadataldentifier (class MD\_Identifier) [0..1]
- dateInfo (class Cl\_Date) [1..\*]
- contact (class Cl\_Responsibility) [0..1]
- defaultLocale (class PT\_Locale)[0..1]
- metadataLinkage (class Cl\_OnlineResource)[0..\*]
- parentMetadata (class Cl\_Citation [0..1]
- metadataScope (class MD\_MetadataScope)[0..\*]
- metadataStandard (class Cl\_Citation) [0..\*] AS/NZS ISO 19115-3 > recommnded but not yet detailed by MDWG
- metadataProfile (class Cl\_Citation) [0..\*] > recommnded but not yet detailed by MDWG

## Other attributes - not yet addressed by MDWG

- otherLocale (class PT\_Locale)[0..\*]
- alternativeMetadataReference (class Cl Citation [0..\*]

### Discussion


The MD\_Metadata package defines the schema for describing the complete metadata about a resource and metadata about the metadata itself. It is composed through an aggregate of 12 additional metadata classes as shown above. The MD\_Metadata class also contains attributes providing information about the metadata record itself. Those recommnded attributes are covered in other sections as cited above

#### Recommendations

Therefore - It is recommended that all spatial metadata utilise the structure provided by the ISO19115-1 MD\_Metadata class and follow the guidance provided.

## **UML** diagrams





**Figure 46:** image-20190711170142639



# Class (abstract) - MD\_Identification

When capturing information on a spatial resource, it is important to identify and categorise information as pertaining to the data or service resource and to distinguish these information from that which applies to the metadata itself. MD\_Identification provide a abstract package, the properties of which can be expressed for data (MD\_DataIdentification) or service SV\_ServiceIdentification) resources.

- Governance ISO
- Metadata Type structural
- ICSM Level of Agreement □

### **Definition**

basic information required to uniquely identify a resource or resources.

## **ISO** Requirements

At least one [1..\*] [MD\_Identification](http://wiki.esipfed.org/index.php/MD\_Identification) must be present in a metadata record. This must be instantiated as a MD\_DataIdentification or SV\_ServiceIdentification instance.

### **ISO** Associations

**MD\_Identification** is an abstract class that can be instantiated as either - MD\_DataIdentification - SV\_ServiceIdentification It is a child of - MD\_Metadata.identificationInfo

## Child packages -

### Concrete subsclasses of MD\_Identification

- Data Identification (class MD\_DataIdentification) > ?create Entry?
- **Service Identification** (class SV\_ServiceIdentification) > To Be Completed at later date



### MDWG recommended MD\_Identification packages

- resourceLineage (class Li\_Lineage) [0..\*]
- referenceSystemInfo (class MD\_ReferenceSystem)
- metadataConstraints (abstract class MD Constraints) [0..\*] see
- Metadata Security Constraints
- Metadata Legal Constraints
- indentificationInfo (abstract class MD\_Identification) [1..\*] see:
- **Data Identification** (class MD\_DataIdentification) > ?create Entry?
- **Service Identification** (class SV\_ServiceIdentification) > To Be Completed
- distributionInfo (class MD Distribution) [0..\*]

## Other packages - not yet addressed by MDWG

- metadataMaintenance (class MD\_MaintenanceInformation) [0..1]
- spatialRepresentationInfo (abstract class MD\_SpatialRepresentation) [0..\*]
- metadataExtensionInfo (class MD\_MetadataExtensionInformation) [0..\*]
- applicationSchemaInfo (class MD\_ApplicationSchemaInformation) [0..\*]
- portrayalCatalogInfo (class MD\_ProtrayalCatalogueReference) [0..\*]
- contentinfo (abstract class MD\_Contentinformation) [0..\*]
- dataQualityInfo (class DQ\_DataQuality (from ISO19157)) [0..\*]

## Atributes and packages

MDWG Recommended Click on the attribute name for guidance. - abstract - (type - charStr) [1..\*] - purpose - (type - charStr)) [0..1] - status - (codelist - MD\_ProgressCode)[0..1] - topicCategory - (enumeration - MD\_TopicCategoryCode)[0..\*] - pointOfContact - (class - Cl\_Responsibility) [0..1] - spatialRepresentationType - (codelist - MD\_SpatialRepresentationTypeCode)[0..\*] - spatialResolution - (class - MD Resolution) [0..\*] - additionalDocumentation - (class - Cl\_Citation) [0..\*] - associatedResource - (class - MD AssociatedResource) [0..\*] - Citation - (class - Cl\_Citation - Extents - (class - EX\_Extent)\* [0..\*] High-level thematic classifications to

### Others - not yet addressed by MDWG

assist in the grouping and searching of data.

- **credit** (*type charStr*) [0..\*] Recognition of those who contributed to the dataset. Do not include URLs here. Provide full citations in MD\_AssociatedResource section.
- **temporalResolution** *(class TM\_PeriodDuration* [0..\*] The temporal resolution (level of temporal detail) of the dataset.



- **processingLevel** (class MD\_Identifier) [0..\*] An identifier code that identifies the level of processing in the producers coding system.
- **resourceSpecificUsage** (class MD\_Usage) [0..\*] Basic information about specific application(s) for which the resource(s) has been or is being used by different users.

## Discussion

Identification information about a resource is of high importance to document as this information strongly impacts on the ability of a user to asses the resource fitness to use. The **identificationInfo** package must be of either type *data* (*MD\_DataIdentification*) or *service* (*SV\_ServiceIdentification*).

#### Recommendations

There must be at least one (and usually just one) identificationInfo packages in a metadata record that contains the substantive information about a cited resource.

### **Related Classes**

• **MD\_DataIdentification** An instantiation of the abstract calss for data resource metadata

## **UML** diagrams



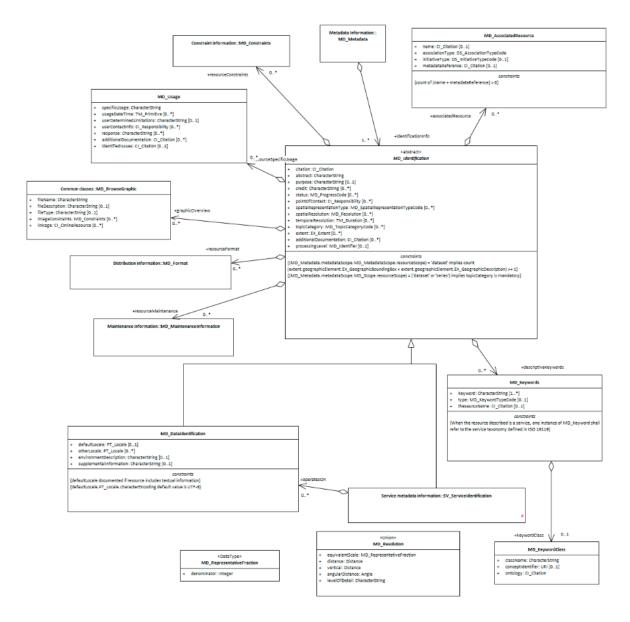



Figure 47: MD\_Identification



# class - MD\_Identifier

In order for machines and people to distinguish singlton elements cited a Metadata record MD\_Metadata , a method to provide a unique identifier.

- Governance ISO
- Metadata type administrative
- ICSM Level of Agreement □□

## **Definition**

## Provides a value uniquely identifying an object within a namespace

#### **ISO** Associations

- MD\_Metadata.metadataldentifier
- MD\_ReferenceSystem.referenceSystemIdentifier
- · MD Medium.identifier
- MD\_RangeDimension.name
- MD\_ImageDescription.imageQualityCode
- MD\_CoverageDescription.processingLevelCode
- EX\_GeographicDescription.geographicIdentifier
- CI\_Citation.identifier
- CI\_Party.PartyIdentifier

## Sub Elements for class MD\_Identifier

- **code** (*type charStr*) [1..1] alphanumeric value identifying an instance in the namespace, mandatory when identifier is provided
- **codespace** (*type charStr*) [0..1] identifier or namespace in which the code is valid. Usually a URL path by which, when combined with the uuid, the full path to the resource is provided.
- authority (class CI\_Citation) [0..1] the provider of the UUID
- **version** (*type charStr*) [0..1] version identifier for the namespace
- **description** (*type charStr*) [0..1] natural language description of the meaning of the code value



### Recommendations

It is recommended that the MDWG develop general advise on the use of MD\_Identifier - particularly concerning the use of <mcc:codespace> and leverage the ability of combining this element with its mandatory sibling element <mcc:code> to provide a linkage to a cited resource. It would also be beneficial to discuss other sibling elements <mcc:authority>, <mcc:version> and <mcc:description> and develop any needed advice on their general use.

## **UML** diagrams

```
#DataType

MD_Identifier

# authority: CI_Citation [0..1]

# code: CharacterString

# codeSpace: CharacterString [0..1]

# version: CharacterString [0..1]

# description: CharacterString [0..1]
```

Figure 48: MDIdentifier



# Class - MD\_LegalConstraints

When constraint (MD\_Constraints) are of a legal nature they should be captured using the class **MD\_LegalConstrints**.

- Governance ISO
- Metadata type structural
- ICSM Level of Agreement □□

#### **Definition**

restrictions and legal prerequisites for accessing and using the resource or metadata.

### **ISO** Associations

The class, *MD\_LegalConstraints* is an specialisation of *MD\_Constraints*. Follow the guidance provided for that class plus the following additional guidance.

**ISO Constraints** When MD\_LegalConstraints is used the at least one of the elements accessConstraints, useConstraints, useLimitation, releasability and otherConstraints must be present. When using otherConstraints, either accessConstraints or useConstrants must equal otherRestrictions.

**Attributes** Has all the attributes of MD\_Constraints plus the following: - **accessConstraints** - (codelist - MD\_RestrictionCode) [0..\*] access constraints applied to assure the protection of privacy or intellectual property, and any special restrictions or limitations on obtaining the resource or metadata - **useConstraints** - (codelist - MD\_RestrictionCode) [0..\*] constraints applied to assure the protection of privacy or intellectual property, and any special restrictions or limitations or warnings on using the resource or metadata - **otherConstraints** - (type - charStr) [0..\*] other restrictions and legal prerequisites for accessing and using the resource or metadata

### Discussion

Information about constraints on the access and use of a resource or its metadata is of high importance to document as this information strongly impacts on the usability



of the resource to the user. Constraints may be security (*MD\_SecurityConstraints*), legal (*MD\_LegalConstraints*) or other (*MD\_Constraints*).

A restriction may be applicable to a particular aspect of the resource. In this case capture this scope in *constraintApplicationScope* using a value from *MD\_Scope* 

Almost all created resources (including metadata) carry some legal rights, restrictions and responsibility regarding their access and use. For instance, in most jurisdictions, copyright is automatically granted to the creator of a creative work. Legal restrictions such as licences and end user agreements, need be documented for users and resource managers along with the identity of the holder of these rights. Each agency needs to develop consistant guidance on the use of such statement and share clear understanding of their meaning. This is often done by reference to a external body that manages the definitions of the legal constraints applied.

## **Outstanding Issues**

Good Practice examples lacking There is a need to gain greater consensus as to the general use of MD\_LegalConstraints across its instances by the MDWG.

Distribution Constraints Currently there are no clear methods to apply different legal constraints to different distributions. This may be an ISO issue to address. We should develop use cases.

#### Recommendations

Therefore - It is important to capture all legal constraints that apply to a resource. This should include licences, end user agreements, etc. If the resource is public domain, this should be cited appropriately. Many juristrictions encourage the use of open data and Creative Commons license. This should be encouraged through the use of copyright licenses such as CCO or CC By. Provide the user links to additional information about such constraints, there use and meaning. In addition, document the holder of such rights and how to contact for more information.

#### Crosswalk considerations

**ISO19139** See guidance provided in MD\_Constraints



## **Related Classes**

- **MD\_Constraints** the Superclass to MD\_LegalConstraints. MD\_LegalConstraints implements all the properties of MD\_Constraints. Full guidance of the associated elements are discussed there.
- **MD\_SecurityConstraints** A sibling to MD\_LegalConstraints and an extension to MD\_Constraints for constraints applied for security purposes.

## **UML** diagrams



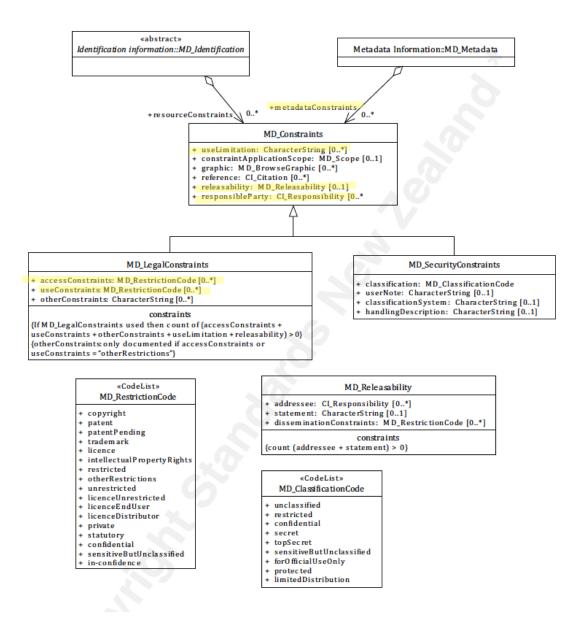



Figure 49: MD\_Constraints



# Class MD\_Scope

The capture of information about the physical extents of the resource is needed under many packeges of inforation about a cited reosurce. A standarised way of this scope is useful. This function is provided by the class **MD\_Scope**.

- Governance ISO
- Metadata type structural
- ICSM Level of Agreement □□

### **Definition**

the target resource and physical extent for which information is reported.

## ISO Associations (May be found in)

- MD\_Constraints.constraintApplicationScope
- LI\_Lineage.scope
- LI\_ProcessStep.scope
- LI\_Source.scope
- MD\_MaintenanceInformation.maintenanceScope

### Attributes -

- **level** (codelist MD\_ScopeCode) [1..1] Mandatory when using MD\_Scope target resource covered
- **extent** (class EX\_Extent) [0..\*] Information about the horizontal, vertical and temporal extent of the resource specified by the scope
- **levelDescription** *(codelist MD\_ScopeDescription)* [0..\*] detailed description/listing of the items specified by the level

### Associated Classes, Codelists and Unions

**MD\_ScopeCode** - **codelist** Class of information to which the referencing entity applies - *attribute* - information applies to the attribute value - *attributeType* - information applies to the characteristic of a feature - *collectionHardware* - information applies to the collection



hardware class - collectionSession - information applies to the collection session - dataset - information applies to the dataset - series - information applies to the series - nonGeographicDataset - information applies to non-geographic data - dimensionGroup - information applies to a dimension group - feature - information applies to a feature - feature Type - information applies to a feature type - propertyType - information applies to a property type - fieldSession - information applies to a field session - software - information applies to a computer program or routine - service - information applies to a capability which a service provider entity makes available to a service user entity through a set of interfaces that define a behaviour, such as a use case - *model* - information applies to a copy or imitation of an existing or hypothetical object - tile - information applies to a tile, a spatial subset of geographic data - metadata - information applies to metadata - initiative - information applies to an initiative - sample - information applies to a sample - document - information applies to a document - repository - information applies to a repository - aggregate - information applies to an aggregate resource - product - metadata describing an ISO 19131 data product specification - collection - information applies to an unstructured set - coverage - information applies to a coverage - application - information resource hosted on a specific set of hardware and accessible over a network

**MD\_ScopeDescription** - **union** (Union - class describing a selection of one of the specified types)

Description of the class of information covered by the information - **attributes -** (*Set - charStr*) instances of attribute types to which the information applies - **features -** (*Set - charStr*) instances of feature types to which the information applies - **featureInstances -** (*Set - charStr*) feature instances to which the information applies - **attributeInstances -** (*Set - charStr*) attribute instances to which the information applies - **dataset -** (*charStr*) dataset to which the information applies - **other -** (*charStr*) class of information that does not fall into the other categories to which the information applies

### Discussion

Information about scope of a citation of an aspect of a resource or its maintenance is of high importance to document as this information strongly impacts on the understandabillity of the resource metadata to the user.

The MD\_Scope is used to describe the breadth and or type of the resource that a metadata record or class describes. It includes a MD\_ScopeCode as a brief indicator of the scope which can be useful in search and presentation applications and a MD\_ScopeDescription in



order to provide more detail. The values in the MD\_ScopeCode list are intentionally general and details of their application are left to the data provider. In order to foster interoperability, the usage of the scope codes should be carefully documented in any community of practice. Clause E.5 outlines possible applications of codes from the MD\_ScopeCode codelist and related codes included in ISO/TS 19139 as part of the MX\_ScopeCode list. These examples are meant to provide reasonable starting points and are certainly not exhaustive.

#### Recommendations

#### Crosswalk considerations

**ISO19139** HierarchyLevel attributes were replaced by an MD\_Scope class to improve the description of the scope of the metadata;

- MD\_Constraints.constraintApplicationScope (New Element)
- This new element was added in order to allow description of constraints on a resource that vary in space and/or time and/or level
- DQ\_DataQuality.scope (replaced by) LI\_Lineage.scope
- This element allows the description of the type and/or extent of the lineage information. DQ\_Data-Quality/scope was moved to ISO 19157
- LI\_Lineage.sourceExtent (replaced by) LI\_Source.scope
- This new element was added in order to allow description of more details of the scope of a lineage section. This was required, in part, to replace the DQ\_Scope from the DQ\_DataQuality class that was moved from 19115 to the new data quality standard (ISO 19157).
- LI\_ProcessStep.scope (New Element)
- This new element was added in order to allow description of the scope of a process step independently from the scope of the entire lineage section. This was required, in part, to replace the DQ\_Scope from the DQ\_DataQuality class that was moved from 19115 to the new data quality standard (ISO 19157).
- MD\_MaintenanceInformation.updateScope and MD\_MaintenanceInformation.updateScopeDescripti (Replaced by) MD\_MaintenanceInformation.maintenanceScope
- These two roles were combined into maintenance-Scope: MD\_Scope [0..\*] in order to allow specifying a scope that includes a spatial and temporal extent

### **Related Links**

• ESIP MD\_Scope



## **UML** diagrams

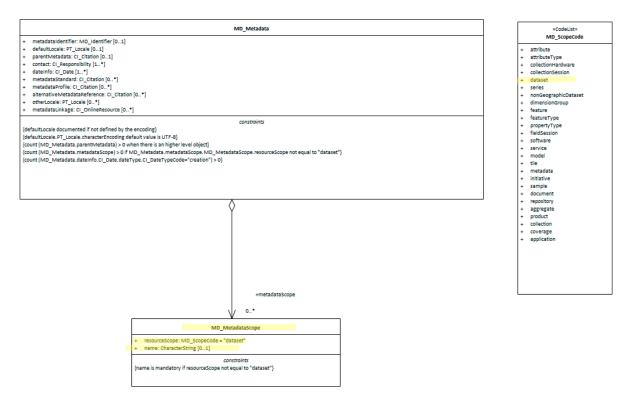



Figure 50: MD\_Scope



# Class - MD\_SecurityConstraints

When constraints information (*MD\_Constraints*) concern security issues they should be captured using the class *MD\_SecurityConstraints*.

- · Governance ISO, Common, Agency
- Metadata type structural
- ICSM Level of Agreement □□

## **Definition**

Handling restrictions imposed on the resource or metadata for national security or similar security concerns.

#### **ISO** Associations

The class, *MD\_SecurityConstraints* is an specialisation of MD\_Constraints. Follow the guidance provided for that class plus the following additional guidance.

## Attributes -

MD\_SecurityConstraints has all the attributes of MD\_Constraints plus the following: - classification - (codelist - MD\_RestrictionCode) [0..\*] Mandatory when using MD\_SecurityConstraints - the name of the handling restrictions on the resource or metadata - userNote - (type - charStr) [0..1] explanation of the application of the legal constraints or other restrictions and legal prerequisites for obtaining and using the resource or metadata - classificationSystem - (type - charStr) [0..1] name of the classification system - handlingDescription - (type - charStr) [0..1] additional information about the restrictions on handling the resource or metadata

#### **Associated Codelists**

**MD\_RestrictionCode** - **codelist** name of the handling restrictions on the resource - *unclassified* - information applies to the dataset - *restricted* - information applies to the series - *confidential* - information applies to non-geographic data - *secret* - information applies to a dimension group - *topSecret* - information applies to a feature - *sensitiveButUnclassified* -



although unclassified, requires strict controls over its distribution - *forOfficialUseOnly* - information applies to the characteristic of a feature - *protected* - information applies to the collection hardware class - *limitedDistribution* - information applies to the collection session

#### Discussion

Information about constraints on the access and use of a resource or its metadata is of high importance to document as this information strongly impacts on the usability of the resource to the user. Constraints may be security (MD\_SecurityConstraints), legal (MD\_LegalConstraints) or other (MD\_Constraints).

A restriction may be applicable to a particular aspect of the resource. In this case capture this scope in *constraintApplicationScope* using a value from *MD\_Scope* 

Many of the resources and even its metadata may carry some security restrictions regarding their access and use. The reasons may be for national security, financial or commercial sensitivity, or privacy concerns as is common with census data. These security restrictions need be documented for users and resource managers along with the identity of the applier of these constraints. Each agency needs to develop consistent guidance on the use of such statement and share clear understanding of their meaning. This is often done by reference to an external body that manages the definitions of the security constraints applied.

## **Outstanding Issues**

Good Practice examples lacking There is a need to gain greater consensus as to the general use of MD\_SecurityConstraints across its instances by the MDWG.

Australia Protective Security Policy Framework A best practice method of using the new Australia Protective Security Policy Framework in ISO 19115-1 must be created by the MDWG. While classificationSystem allows use to declare the security framework we are using, it does not do so as a citation whick limits our ability to document our reference properly. Also, how to include the values in the framework is not clear. Extending MD\_RestrictionCode seems the most obvious, but is changing an ISO codelist the best approach given we want our recommendations not to change the underlying ISO 19115-1.



#### Recommendations

Therefore - It is important to capture all security constraints that apply to a resource, including its metadata. If there be none then it may be useful to state this fact through the use of the unclassified value of MD\_RestrictionCode, particularly if your organisation does regularly handle sensitive resources. Agencies should develop consistent guidance on the use of security classifications and share clear understanding of their meaning with users.

At a minimum the Name (primary and alternate) and version by which this security restriction on the access and use of this cited resource is known should be captured along with the classification value selected from the codelist - MD\_ClassificationCode.

#### Crosswalk considerations

**ISO19139** See guidance provided in MD\_Constraints

### **Related Classes**

- **MD\_Constraints** the Superclass to MD\_LegalConstraints. MD\_LegalConstraints implements all the properties of MD\_Constraints. Full guidance of the associated elements are discussed there.
- **MD\_LegalConstraints** A sibling to MD\_SecurityConstraints and an extension to MD\_Constraints for constraints applied for legal purposes.

## **UML** diagrams



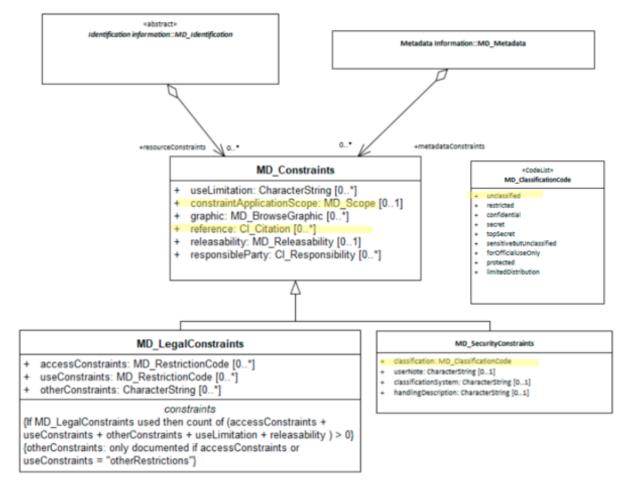



Figure 51: MD\_Constraints



# class - PT\_Locale

To clearly identify, for humans and machines, the language in which metadata and its associated resources are captured we need a standised way to store such information. The class PT\_Locale provides us such a structure.

- Governance ISO
- Metadata type administrative
- ICSM Level of Agreement □□□

#### **Definition**

## Contains the description of a locale

#### ISO Associations -

- MD\_Metadata.defaultLocale
- · MD Metadata.otherLocale
- MD\_DataIdentification.defaultLocale
- MD\_DataIdentification.otherLocale
- MD\_FeatureCatalogueDescription.locale

### ICSM Recommended Sub Element for class CI\_OnlineResource

- **language** (codelist LanguageCode) [1..1] Madatory. Designation of the locale language in ISO 639-2, 3-alphabetic digits code
- **country** (codelist CountryCode) [0..1] Optional. Designation of the specific country of the locale language
- **characterEncoding** (codelist MD\_CharacterSetCode) [1..1] Madatory. Use UTF8

## **Discussion**

A locale (identified as PT\_Locale) is a combination of language, potentially a country, and a character encoding (i.e., character set) in which localised character strings are expressed. Because of our location and culture, the defualt language for jusidictions under the guidance of ICSM will most usually be to use



## Outstanding Issues > DCAT Guidance states: "Resources defined by the Library of Congress (1, 2) SHOULD be used. If a ISO 639-1 (two-letter) code is defined for language, then its corresponding IRI SHOULD be used; if no ISO 639-1 code is defined, then IRI corresponding to the ISO 639-2 (three-letter) code SHOULD be used." This may present a problem of translation from ISO 19115-1 use of ISO 639-2, 3-alphabetic digits code

#### Recommendations

Therefore - given the location and area of influence of ICSM, for language, the three letter code chosen from the ISO 639-2 LanguageCode CodeList should default to "eng" for most instances of PT\_Locale in a metadata record. Use UTF8 as the characterEncoding for consistancy accross catalogues.

## **UML** diagrams



Figure 52: PT\_Locale