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SUMMARY  

William Dawes arrived in Australia in January 1788 as an astronomer with the Australian 
First Fleet and as the Board of Longitude’s official observer. During his time in Australia 
he carried out many astronomical observations, of which the record has gone lost. The 
fieldbooks were possibly still with the widow of William Wales, of the Board of 
Longitude, after Wales died. 
What has not been lost are his gravity observations in Sydney Cove in Australia, of 1788, 
made with a temperature compensated grid iron pendulum, of which a record can be found 
in his correspondence with Nevil Maskelyne, the English Astronomer Royal.  
As far as I know, William Dawes’ pendulum gravity observations have not been published 
previously as such, until the recent paper by Morrison and Barko (2009). I helped 
investigate this series of observations which led to the first gravity acceleration 
determination on Australian soil, of which the record has survived. This paper reports on 
my analysis of his precision pendulum gravity determination. In this story, William Wales 
speaks from his grave, in support of Dawes. 

RESUMEN 
Guillermo Dawes llegaba a Australia en el Enero de 1788, como astrónomo con la Flota 
Primera Australiana y como el observador oficial del Consejo de la Longitud de la 
Inglaterra. Durante su tiempo en Australia el fue cargado con hacer muchos observaciones 
astronómicas, pero los libros de anotaciones fueran perdidos porque ellos todavía estaban 
posiblemente con la viuda de Guillermo Wales, del  Consejo de la Longitud, después del 
muerte de Wales.   
Pero lo que no fue perdido, son sus anotaciones de determinaciones gravimétricas de 
1788, con péndulo compensado de rejilla en el Sídney Cove, Australia, porque todavía los 
podemos encontrar en su correspondencia con Nevil Maskelyne, el Astrónomo Real, de la 
Inglaterra. 
No creo que las observaciones gravimétricas péndulares de Guillermo Dawes fueran 
interpretado correctamente como algo gravimétrica, hasta que un publicación recienta por 
Morrison y Barko (2009). Yo ayudé con la investigación de este serie de observaciones, 
que resultó en la primera determinación de la aceleración de gravitación sobre la tierra de 
Australia, de que todavía tenemos las observaciones. Esta reporta aquí, presenta mi 
estudio de sus determinaciones gravimétricas péndulares de precisión. En esta historia, 
Guillermo Wales habla desde su tumba, soportando al Guillermo Dawes.  
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Recently a paper by Morrison and Barko appeared in the Journal Historical Records of 
Australian Science. This paper was named: Dagelet and Dawes: Their Meeting, Their 
Instruments and the First Scientific Experiments on Australian Soil. In the course of the 
development of their paper, in which the January 1788 meeting was discussed between 
Joseph Lepaute Dagelet (d’Agelet was the La Pérouse expedition’s astronomer) and 
William Dawes (the astronomer with the Australian First Fleet), I helped investigate what 
could well be the first gravity determination on Australian soil of which the record has 
survived, observed by William Dawes. It was suggested to me to write a record of my 
investigation of Dawes’ pendulum gravity observation, and demonstrate his gravity value. 
 
1. Historical description 
In 1788 a gravity observation generally consisted of a series of daily clock rate 
comparisons of a special pendulum clock, timed against some astronomical observations 
(daily equal altitudes of the sun either side of midday) often aggregated over the course of 
a whole month (Table 1). The pendulum had to have a precisely determined length that 
could be easily reproduced anywhere at the 10 micron level and the pendulum had to be of 
a temperature compensated type. When observing gravity via a pendulum, an amplitude 
dependent correction has to be made to the clock rate necessitating also the recording of 
the pendulum half amplitude, which the observers referred to as “the arc from the vertical” 
or “the arc of vibration”.  
The correction is usually calculated by using a series expansion of what we now call an 
elliptical integral and this correction was known to Nevil Maskelyne, the English 
Astronomer Royal. He had all his observers record this “arc from the vertical” during their 
voyages, together with the clock rate, for an agreed length of the pendulum. The full 
pendulum equation can be found on page 335 in Giancoli (1988): 

                     
where θm is the “arc from the vertical”, L is the length of the pendulum in metres, and g is 
the acceleration of gravity in m/s2 and T is the period of a full swing of the pendulum in 
seconds. 
So T2 = 4 π 2(L/g)(1 + Δ) 2   where (1 + Δ) 2  is the above series between the brackets, 
squared. 
First a description of the instrument: the astronomical regulator clock. The astronomical 
regulator clocks carried around the world by the astronomers had a “seconds” pendulum, 
which was almost a metre long and which “escaped dead seconds in the manner of the late 
Mr Graham” (Wales & Bayly, 1777). This pendulum was temperature compensated after 



TS 6M – History of Surveying     3 / 14 
Case Bosloper 
William Dawes’ Gravity Measurement in Sydney Cove, 1788 
 
FIG Congress 2010 
Facing the Challenges – Building the Capacity 
Sydney, Australia, 11-16 April 2010   
 

an idea of George Graham (1673 – 1751) to use two different types of metal. The 
pendulum was symmetrically folded (fig. 4), so that the expansion of one type of metal 
lifted the pendulum bob and the expansion of the other type of metal lowered the 
pendulum bob. The ratio of the expansion coefficients of the two types of metals had to be 
in a certain balance with the lengths of the different metals so that the whole thing 
becomes temperature compensated. It was the handiwork of John Harrison (of Longitude 
fame) that put this idea into practice (fig. 5). As the resulting pendulum length needed to 
be adjustable with very high precision, it was provided with a regulator nut. The regulator 
clock acquired its name from this fine motion “screw”. At the bottom of the pendulum 
you find a nut with a graduation engraved around it, and it was generally constructed in 
such a way that a full turn of the nut altered the rate of such a clock by very close to half a 
minute per day. 
 
2. Defining the problem 
The pendulum length used by William Dawes now needs to be determined.  

When describing his pendulum, Dawes writes on Oct 1st, 1778: “the screw is at 15 on the 
nut” (Morrison, 2008). In order to understand the meaning of this, we find a statement on 
page 131 by William Wales in Wales & Bayly (1777) in his record of astronomical 
observations of Cook’s second voyage, where he describes the setting of the pendulum 
length: 
Quote: .....it was always altered, in order to its being packed up, yet on setting up again, it was constantly 
brought back to its proper length, by means of a scratch on the rod, and the numbers on the nut. 
Unquote. 

In his “Introduction” to the observational record of the voyage, William Wales writes in 
Wales & Bayly (1777):  

Quote: ......On reconsidering the circumstances of the clock’s different rates of going at the Cape of Good 
Hope in November 1772 and April 1775, I am rather inclined to alter my opinion (see page 131) and to 
conclude that I made a mistake in setting the pendulum to its proper length, either when here in November 
1772 or at Dusky Bay in New Zealand, after which time it was never altered; basically as the difference 
corresponds nearly to that which would arise from a whole revolution of the nut which supports the ball of 
the pendulum, namely 28” or 29”, increased by the same quantity that the clock had gone faster on being set 
up a second time both at Point Venus and Queen Charlotte’s Sound.....  Unquote. 

In the left figure, fig. 1 below, from Howse & Hutchinson (1969), we can see the top part 
of a round pendulum bob, and an example of such a set of scratch marks on the rod, to 
which the bob can be set. The last adjustment is made by setting the regulator nut to a 
predetermined number on the nut. This nut is visible just below the bob on the picture to 
the right (fig. 2). You can see a little flat bit directly above the regulator nut: possibly an 
index to aid the setting of the nut. Underneath the pendulum is a larger graduated plate 
with which one can make repeat readings of the pendulum amplitude value, the “arc from 
the vertical”, in order to get a good mean value.  

The clock that William Dawes had was a Shelton astronomical regulator clock (similar to 
fig. 5), which was of a type also carried on the three James Cook voyages. If we would  
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Fig.1 After Howse&Hutchinson (1969), left.             Fig.2 After Nick Lomb (2004), right. 
 
possess data on the length of Dawes’ pendulum, like Nevil Maskelyne did, we would be 
able to calculate his 1788 gravity value for Sydney Cove. In this paper I show how to do 
just that, with help from William Wales. 

3. Observations 
William Dawes has left us with correspondence to Nevil Maskelyne which gives us the 
daily rate of going of his Shelton clock at Sydney Cove for a section of September 1788. 
Laurie (1988) shows that in a letter of the 1st of October 1788, Dawes mentions the 
regulator clock losing 36 seconds in sidereal time in one sidereal day, and in the last 11 
days before October 1st the clock was losing 37.25 seconds per day (Morrison, 2008). 
There were many more comparisons carried out by him in the following months and years 
(there is a list of dates of these, in other correspondence) for the going of the clock, but the 
relevant field books have been lost when in possession of William Wales, who died in 
1798. Laurie (1988) also shows that on 16th of April 1790 Dawes wrote to Nevil 
Maskelyne that the pendulum’s “arc of vibration” has been 1 degree and 30 sec from the 
beginning and continued to do so “constantly the same”. In order to calculate a value for 
the acceleration of gravity, we need to know one more variable: the pendulum length. 
Thanks to the work by William Wales this is possible. 
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Table 1. A page from Bayly (1782), showing a typical gravity observation from “the Going of 
the Clock”. 

4. Error budget 
The variables in the pendulum equation are the swing period, the pendulum length and the 
arc of vibration. The swing period was determined by comparison with equal altitude 
observations of the sun, either side of midday for determining local noon. The quality of 
these clock rate observations were important so a large number of repeats were observed 
averaged to 1/100-th of a sec. We can conservatively credit them with an 0.1 second per 
day time base or about 1 ppm. But other factors influence the result. Resonance of the axis 
of motion of the pendulum was countered by chocking the clock with guy posts. The 
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pendulum amplitude also needed observing: it is influenced by the rust level or stiffness of 
the pendulum suspension spring, the level of winding of the clock, ambient temperature, 
etc. The pendulum motion is not precisely a simple harmonic motion. At increasing 
pendulum amplitude the clock rate is not totally independent anymore of the amplitude 
and the relationship is not linear but quadratic. This correction already reaches 9.5 parts 
per million when the arc from the vertical is half a degree. As this angle is usually the 
triple or almost quadruple of this, the correction increases to between nine-fold to sixteen-
fold. At an average swing of the pendulum, an accuracy of 5 minutes of arc in this 
amplitude estimate affects the calculated gravity reading by say 10 parts per million. 

The pendulum length has been temperature compensated as mentioned above (say to 5 
ppm), by the use of metals with different expansion coefficients. With the setting accuracy 
of the pendulum length at about one third (or better) of one of the 28 engraved divisions 
on the regulator nut, we get a potential length resolution of 0.0003 inch (7.5 microns). 
This is phenomenal and is about 10 parts per million or less, of the pendulum length. 
Figure 3 shows an example of an engraved modern regulator nut. 

  Fig.3 Courtesy Artur Kucharczyk 
 
5. Methodology for retrieval of the pendulum length 
It would be expected that William Dawes used the London pendulum length. This can be 
verified by consulting relative gravity between Sydney and London, by using a normal 
gravity model and a chart of anomalies. I investigated whether the London pendulum 
length had been used by him and concluded to my dismay that this was not so: his daily 
clock rate seems to be 30 sec too fast for that, it should have lost over a minute per day.   

I thought I’d investigate other contemporary gravity observational work. Howse (1969) 
shows a table of clock rates for Cook’s second voyage, but without the crucial “arc from 
the vertical” data. Luckily I found that we have enough other information to draw a 
conclusion on the pendulum length of Dawes’ regulator clock, by studying William 
Wales’ gravity work in Wales & Bayly (1777). I went to the State Library of NSW and 
investigated the raw observations of Captain James Cook’s second voyage, as published in 
1777 by his astronomer William Wales, in order to solve the puzzle by accessing William 
Wales’ “arc from the vertical” observations, not listed in Howse (1969).  

The late William Wales has now indeed come to the rescue, when he explains some 
discrepancies in his clock rates. Thanks to William Wales’ own review of problems 
experienced by him in setting the pendulum length during Cook’s second voyage, I have 
come up with an answer for the other pendulum length, the one from William Dawes.  
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At first sight the following exposé looks circular, but it is based on solving for a 
contemporary pendulum length estimate, using a larger population of another’s 
appropriate pendulum observations (those of William Wales) and checking whether there 
is any supporting evidence for the end result.  

 
6. Data Cleaning 
The discrepancies in William Wales’ clock rates were mentioned above. To complicate 
matters, the London pendulum length appears not to have been used by William Dawes. 
This now needs investigation.  

During Captain Cook’s third voyage, Lieutenant King writes among his observations that 
he found the nut on the pendulum had shifted and he reset it from 28 (0) to 2, which made 
the going of the clock two seconds per day faster for an increase in the nut setting against 
the index (Bayly, 1782). To run faster the pendulum has to be shorter, from this I can 
conclude that the nut was engraved with a clockwise graduation if the thread of the 
pendulum is of a normal handedness type. It can be set with an accuracy of half to a third 
of a division engraved on the nut, but the standard practice was to set it to a full integer.  

From the remark by William Wales in Wales & Bayly (1777), that a full turn of the nut 
changed the rate of going of the clock by 28 to 29 seconds per day (let’s say 28.5”) and 
from a remark from Lieutenant King saying that a setting of 28 was equal to “(0)” in 
Bayly (1782), I can calculate an estimate of the speed of the pendulum regulator thread:  
Using the simple pendulum equation, we can see that the ratios of the pendulum lengths of 
William Wales before and after the mistake (a whole turn of the nut) are proportional to 
the ratios of the squares of the periods, if all else is kept the same:  
L0/L1 = T0

2/T1
2  or L0 = L1 * T0

2/T1
2  where L1 and T1 are the length and the period with the 

mistake. 
So the length change is L1 - L0 = L1 – (L1 * T0

2/T1
2) = L1 (1 - T0

2/T1
2)  

The ratio of the periods (without and with 28.5” mistake) is 86400/86428.5 or 0.9996702 
as there are 86400 seconds in a day, and squared this ratio gives a value of 0.999341. 
The change of the pendulum length L1 - L0 is derived from 1 minus this squared ratio, 
scaled by the general length of the seconds pendulum, described by George Graham 
(Nicholson, 1825) as about 39.13 inches or g/ π2. This gives me a change to the pendulum 
length of 0.0258 inches for a full turn of the nut. Now we know how to clean Wales’ data! 
Also, the speed of the thread is the inverse which estimates at 38.8 threads per inch.   
 
7. Results 
Where is this all leading to? I have used a normal gravity model and relevant anomaly 
map for an estimate of the gravity at all the harbours in Cook’s second voyage where 
William Wales observed the rate of going of his pendulum clock. I derived the normal 
gravity formula for EGM2008 and checked with the equivalent 1967 International 
Formula for normal gravity (Heiskanen & Moritz, 1967). I used a EGM2008 anomaly 
chart on the web with the first, and a crude 1967 anomaly chart (Vanicek, 1986) with the 
latter. Using the clock rates and pendulum amplitudes I solved for the pendulum lengths 
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for these harbours and found that at the harbours affected by the above mistake which 
Wales mentioned, he had an average effective pendulum length of 39.111 inches, with 
0.002 inch as the standard deviation of the mean (Table 2). 
When we take the above quote from William Wales in account, in which he says his 
clocks were running too fast commensurate with a full turn of the nut, we can conclude 
that the effective pendulum length setting was 0.0258 inch shorter than intended, which 
would speed up the clock by the required number of seconds mentioned by Wales. 
Together with the solved pendulum length of 39.111 inches, this then gives us an estimate 
of about 39.137 inches as the setting of the pendulum (the London pendulum length) 
which was intended by Nevil Maskelyne and which would give the clock a zero daily rate 
of going in London when rated against the astronomically observed results there.  
Now that we can conclude that the intention was to maintain the London pendulum setting 
as the length, we would expect William Dawes’ pendulum to be set at this length as well. 
But using the clock rate reported by William Dawes (37.25 sec slow in Sydney Cove) and 
the ratio of normal gravity for Sydney and London, corrected with an appropriate 
anomalies chart, we can conclude that William Dawes’ effective pendulum length would 
not give a zero daily clock rate gain or loss in London, but actually would be thirty 
seconds fast per day in London and thus have the wrong pendulum length selected (a 
whole turn of the regulator nut):  
The ratio of the square of the pendulum periods in two places is inverse to the ratio of 
gravity in the two locations if all else remains the same; this can be worked out from the 
pendulum equation.  
           TL

2/TS
2 = gS/gL which can be expressed as TL = TS√(gS/gL)  

The general period for a seconds pendulum is two seconds. If the pendulum runs slow in 
Sydney by 37.25 sec in a day, its period will be larger than two seconds by the ratio 
86400/(86400 - 37.25), which gives us a Sydney pendulum period TS of 2.00086264 sec 
for a forward swing plus a backward swing. For the Greenwich latitude of 51.17 decimal 
degrees and 33.87 for Sydney we get a normal gravity ratio γS/γL of 0.998438, using the 
equation for normal gravity. The square root of this is 0.999219. This means the London 
pendulum period TL = TS√(γS/γL) would be 1.999300 sec or 0.999650 times 2 sec. In 
86400 true seconds the same pendulum would beat 86400 / 0.999650 or 86430.25 sec in 
London, which means the clock would run 30 seconds fast per day in London. This proves 
William Dawes did not have the London pendulum length set on his astronomical 
regulator clock in Sydney. 

This suggests to me that he made the same mistake as William Wales (and William Bayly) 
did during Cook’s second voyage and set the pendulum nut wrong by a whole turn of the 
nut. Dawes effectively shortened the intended pendulum length of 39.137 inches by 
0.0258 inch to the same 39.111 inches as occurred with William Wales; this would indeed 
make the clock gain 30 seconds per day in London.  

 So, armed with this resolved pendulum length I can now combine William Dawes’ 
astronomical regulator clock rate and his 1.5 degree arc from the vertical reading as 
follows and find a gravity value for Sydney Cove, observed by him in 1788, using the 
above pendulum period equation from Giancoli (1988). 
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We can rework this pendulum equation so that it expresses gravity as a function of the 
other variables: 
               g = 4π2.L(1 + Δ)2 / T2  
where the squared series expansion (1 + Δ)2 works out as 1.000086 for θm = 1.5 degrees. 
Above we found that T = 2.00086264 for Dawes’ pendulum. After converting the 
pendulum length L of 39.111 inches into metres (0.9934194 m) we see that the Sydney 
Cove gravity measurement results in g = 9.79705 m/s2, or 979.705 gal. This has an 
accuracy of about 25 parts per million, observed in September 1788 by William Dawes, 
with local noon determined by equal altitude observations of the sun, through most of 
September, in order to determine his clock rate.  
 
8. Analysis 
I first thought that the only explanation for the short 39.111 inch pendulum lengths was 
that Nevil Maskelyne must have made early use of a pendulum length for a standard 
latitude of 45 degrees. Around 1790 there was a move before the French National 
Assembly and also before the American Congress to consider a standard latitude of 45 
degrees for the choice of pendulum length for science. I reported this to Barko and 
Morrison when they were preparing their above mentioned paper on the meeting between 
Dawes and d’Agelet, but a later inspection recently by me of the raw observations as 
described by William Wales in Wales & Bayly (1777) and his explanation of his mistake, 
set me straight. 

We can assume this 39.137 value, which I estimated via the thread speed, to have been the 
Greenwich calibration value for an astronomical regulator clock pendulum length during 
Cook’s second voyage. Indeed, later in 1819, according to Zupko (1990), there is evidence 
of 39.1372 inches being used as the standard pendulum length setting. 

According to Derek Howse (Howse, 1969), we can find in Board of Longitude papers that 
William Wales had the index to the bob of his pendulum stand at 13 on the nut and he had 
the top of the bob come up against a horizontal scratch on the rod, when going at the 
Royal Observatory at Greenwich (March 28 to April 1st, 1772), and the clock gained 5.03 
seconds per day against astronomical obs. Sixteen years later William Dawes confirms 
that the pendulum of his particular Shelton astronomical regulator clock stood at 15 on the 
nut. What seems to have happened to them both is that when moving the bob to the 
scratch mark on the rod, they possibly found the regulator nut almost half a turn away 
from the desired reading on the nut (the calibration setting), making it ambiguous whether 
to turn to the left or to the right to get the proper number on the nut. This changes the 
pendulum length by about one third of a millimetre in one or the other direction. This 
meant now and then the pendulum length was a full turn of the nut away from where it 
should be. I had a look at the observations of William Bayly, who was with Captain 
Furneaux on the Adventure at the time. I solved for his pendulum lengths and there also 
seem to be two clock rates which have been similarly affected, but now the other way, 
with the pendulum length 0.0258 inch too long instead of too short. It was pointed out to 
me that Wales’ initials are on the relevant letters from Dawes (Morrison, 2008). I am  
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Table 2 (left). Pendulum lengths solved from the clock rates and pendulum amplitudes of the 
Shelton clock with Captain Cook on The Resolution. Table 3 (right). Gravity derived from 
correct pendulum lengths. 
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 convinced William Wales was aware of the pendulum length error of William Dawes. 

9. The importance of this for eighteenth century physical geodesy 
Clairaut (1713 - 1765) had shown that the flattening of the earth could be derived from 
gravity measurements. The equation for the radius of an ellipsoid is:  
                               r = a(1 – f sin2Φ)  
where a is the semi-major axis, f is the earth’s flattening and Φ is the latitude. 

This equation was important because gravity was known to be a function of the earth’s 
radius. You could express or model gravity with almost the same equation, except with a 
plus sign, to show that gravity increases with latitude. So there is an inverse relationship 
with the radius value.  
                              γ = γequator(1 + f* sin2Φ).  Clairaut’s equation as in Magnizki (1960). 
This is also known as Newton’s gravity formula for normal gravity as in Torge (1980). 
The discerning reader will recognise that this looks like a first approximation of the 
modern international formulas for normal gravity, which I in fact used to come to the 
above conclusions about Dawes’ measurement. 
Clairaut showed that the earth’s flattening f and the gravity flattening f* could be worked 
out from each other, as in Heiskanen & Moritz (1967), p. 74, equation 2-99. This became 
known as Clairaut’s theorem. The only other information you needed to know was the 
actual gravity at the equator gequator and the centrifugal force at the equator.  
The meridian arc measurement of Peru of 1745 (Godin, La Condamine and Bouguer) and 
that of Lapland of 1736 (Maupertius and Clairaut) had originally resulted in an earth 
flattening estimate in the vicinity of 1/217 as shown by Jordan & Eggert (1948).  
The gravity flattening is f* = ( gpole  -  gequator) /gequator.  In fact the gravity flattening derived 
from old gravity observations, together with Clairaut’s theorem, suggests a flattening 
value for the earth in the 1/300 range and this could be what has suggested that one of the 
meridian arc measurements was in error. This was then corrected by Svanberg in 1810 by 
remeasuring part of the Lapland meridian arc, resulting in an early 19th century flattening 
estimate of 1/310 for the earth, which is closer to the true value.  
Using highly precise pairs of gravity values at widely separated latitudes (Table 3), Nevil 
Maskelyne could solve for the gravity flattening f* and the equatorial gravity γequator. 
Using Clairaut’s theorem, one could then derive the earth’s flattening from the gravity 
flattening. So these were interesting times. This is what precise gravity measurements like 
those from William Dawes contributed to. 
 

10. Conclusion 
It has been confirmed here that William Dawes observed gravity at Sydney Cove and the 
record has survived. But he made the same mistake in setting his pendulum regulator nut 
in 1788 as William Wales did between 1772 and 1775, an error which Wales described in 
the Introduction to his own and Bayly’s observations. This effectively shortened both 
Wales’ and Dawes’ pendulum lengths by exactly a full turn of the nut and resulted in an 
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Fig. 4: Crossbar Q2 is suspended from Q1 by two steel bars (S). Crossbar Q2 moves lower 
when the steel bars (S) expand and lowers the pendulum bob, crossbar Q3 moves higher 
when the zinc bars (Z) expand and lifts the pendulum bob which is suspended from Q3. The 
right choice of lengths of the bars with different expansion coefficients creates temperature 
compensation. After Jordan & Eggert, (1948), Handbuch der Vermessungskunde (left).  
 
Fig. 5: Sometimes the whole pendulum construction is suspended upside down as shown by 
the Shelton clock in the picture in the middle. After Armagh Observatory historical 
instruments.  
 
Fig. 6: The picture at the right shows a regulator nut of an Earnshaw pendulum. After 
Armagh Observatory historical instruments.  
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estimated pendulum length of 39.111 inches instead of 39.137. In summary, William 
Dawes’ September 1788 observation of the acceleration of gravity resulted in g = 9.79705 
m/s2, or 979.705 gal for Sydney Cove. This agrees well with modern absolute 
determinations and had an accuracy of about 25 parts per million.  
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Dawes. 
 
 
 
 
 

 
 
Nevil Maskelyne’s 6-figure relative gravity value, on page 405 of the 1771 Philosophical Transactions of 
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Clock Rate and setting of nut 
Oct 1, 1788 
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Dawes’ List of Observations 

Gravity Observation by Cook 
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Error Budget 

Linearity issue 
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Pendulum equation 

g = (4π2L/T2) * (1 + ∆)2 

Setting the Pendulum length 
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A Regulator Nut 

Solve for Pendulum Lengths 
with EGM 2008 

Mean 39.1112 inches,   Std dev of mean O.002 inch (51 microns) 
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Length change for one rev of nut 

From length ratio to length difference: 

L0/L1 = T0
2
 / T1

2 

L1 – L0 = L1 ‐(L1 * T0
2
 / T1

2) 

= L1(1 ‐ T0
2
 / T1

2) 

Estimate L with g/π2 
 

Result: One revolution of nut is 0.0258 inch 

of length change for the pendulum 

London pendulum length or not? 

From normal gravity ratio to pendulum period ratio: 

TL
2 / TS

2 = gS / gL 

TL  = TS   √ (gS / gL) 

 

Conclusion: William Dawes pendulum is too short by 
one revolution of the regulator nut. 

 

Result:  

Sydney Cove gravity value in 1788 

979.705 gal 
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The Appropriate Pendulum 
Lengths 

Case BOSLOPER, Australia 

 

THE END 
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Supporting background 
information 
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 A Six‐figure 
 relative gravity value 

in 1768 
Page 405, Philosophical Transactions of the Royal Society, 1771 

EGM 2008 Anomalies 
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